Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks

The detection of the effects of spin symmetry in momentum distribution of an SU(N)-symmetric Fermi gas has remained challenging. Here, the authors use supervised machine learning to connect the spin multiplicity to thermodynamic quantities associated with different parts of the momentum distribution...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Entong Zhao, Jeongwon Lee, Chengdong He, Zejian Ren, Elnur Hajiyev, Junwei Liu, Gyu-Boong Jo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/66743b77dd114252857f7fdcad5029de
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:66743b77dd114252857f7fdcad5029de
record_format dspace
spelling oai:doaj.org-article:66743b77dd114252857f7fdcad5029de2021-12-02T14:23:03ZHeuristic machinery for thermodynamic studies of SU(N) fermions with neural networks10.1038/s41467-021-22270-52041-1723https://doaj.org/article/66743b77dd114252857f7fdcad5029de2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22270-5https://doaj.org/toc/2041-1723The detection of the effects of spin symmetry in momentum distribution of an SU(N)-symmetric Fermi gas has remained challenging. Here, the authors use supervised machine learning to connect the spin multiplicity to thermodynamic quantities associated with different parts of the momentum distribution.Entong ZhaoJeongwon LeeChengdong HeZejian RenElnur HajiyevJunwei LiuGyu-Boong JoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Entong Zhao
Jeongwon Lee
Chengdong He
Zejian Ren
Elnur Hajiyev
Junwei Liu
Gyu-Boong Jo
Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
description The detection of the effects of spin symmetry in momentum distribution of an SU(N)-symmetric Fermi gas has remained challenging. Here, the authors use supervised machine learning to connect the spin multiplicity to thermodynamic quantities associated with different parts of the momentum distribution.
format article
author Entong Zhao
Jeongwon Lee
Chengdong He
Zejian Ren
Elnur Hajiyev
Junwei Liu
Gyu-Boong Jo
author_facet Entong Zhao
Jeongwon Lee
Chengdong He
Zejian Ren
Elnur Hajiyev
Junwei Liu
Gyu-Boong Jo
author_sort Entong Zhao
title Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
title_short Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
title_full Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
title_fullStr Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
title_full_unstemmed Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
title_sort heuristic machinery for thermodynamic studies of su(n) fermions with neural networks
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/66743b77dd114252857f7fdcad5029de
work_keys_str_mv AT entongzhao heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks
AT jeongwonlee heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks
AT chengdonghe heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks
AT zejianren heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks
AT elnurhajiyev heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks
AT junweiliu heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks
AT gyuboongjo heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks
_version_ 1718391490935259136