Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
The detection of the effects of spin symmetry in momentum distribution of an SU(N)-symmetric Fermi gas has remained challenging. Here, the authors use supervised machine learning to connect the spin multiplicity to thermodynamic quantities associated with different parts of the momentum distribution...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/66743b77dd114252857f7fdcad5029de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:66743b77dd114252857f7fdcad5029de |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:66743b77dd114252857f7fdcad5029de2021-12-02T14:23:03ZHeuristic machinery for thermodynamic studies of SU(N) fermions with neural networks10.1038/s41467-021-22270-52041-1723https://doaj.org/article/66743b77dd114252857f7fdcad5029de2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22270-5https://doaj.org/toc/2041-1723The detection of the effects of spin symmetry in momentum distribution of an SU(N)-symmetric Fermi gas has remained challenging. Here, the authors use supervised machine learning to connect the spin multiplicity to thermodynamic quantities associated with different parts of the momentum distribution.Entong ZhaoJeongwon LeeChengdong HeZejian RenElnur HajiyevJunwei LiuGyu-Boong JoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Entong Zhao Jeongwon Lee Chengdong He Zejian Ren Elnur Hajiyev Junwei Liu Gyu-Boong Jo Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks |
description |
The detection of the effects of spin symmetry in momentum distribution of an SU(N)-symmetric Fermi gas has remained challenging. Here, the authors use supervised machine learning to connect the spin multiplicity to thermodynamic quantities associated with different parts of the momentum distribution. |
format |
article |
author |
Entong Zhao Jeongwon Lee Chengdong He Zejian Ren Elnur Hajiyev Junwei Liu Gyu-Boong Jo |
author_facet |
Entong Zhao Jeongwon Lee Chengdong He Zejian Ren Elnur Hajiyev Junwei Liu Gyu-Boong Jo |
author_sort |
Entong Zhao |
title |
Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks |
title_short |
Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks |
title_full |
Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks |
title_fullStr |
Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks |
title_full_unstemmed |
Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks |
title_sort |
heuristic machinery for thermodynamic studies of su(n) fermions with neural networks |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/66743b77dd114252857f7fdcad5029de |
work_keys_str_mv |
AT entongzhao heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks AT jeongwonlee heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks AT chengdonghe heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks AT zejianren heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks AT elnurhajiyev heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks AT junweiliu heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks AT gyuboongjo heuristicmachineryforthermodynamicstudiesofsunfermionswithneuralnetworks |
_version_ |
1718391490935259136 |