Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
The detection of the effects of spin symmetry in momentum distribution of an SU(N)-symmetric Fermi gas has remained challenging. Here, the authors use supervised machine learning to connect the spin multiplicity to thermodynamic quantities associated with different parts of the momentum distribution...
Guardado en:
Autores principales: | Entong Zhao, Jeongwon Lee, Chengdong He, Zejian Ren, Elnur Hajiyev, Junwei Liu, Gyu-Boong Jo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/66743b77dd114252857f7fdcad5029de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evidence for Bosonization in a Three-Dimensional Gas of SU(N) Fermions
por: Bo Song, et al.
Publicado: (2020) -
Fermionic neural-network states for ab-initio electronic structure
por: Kenny Choo, et al.
Publicado: (2020) -
Embodied Heuristics
por: Gerd Gigerenzer
Publicado: (2021) -
Heuristic assessment of choices for risk network control
por: Christopher Brissette, et al.
Publicado: (2021) -
Dirac fermion metagratings in graphene
por: Pengcheng Wan, et al.
Publicado: (2021)