Noise Robustness Low-Rank Learning Algorithm for Electroencephalogram Signal Classification
Electroencephalogram (EEG) is often used in clinical epilepsy treatment to monitor electrical signal changes in the brain of patients with epilepsy. With the development of signal processing and artificial intelligence technology, artificial intelligence classification method plays an important role...
Guardado en:
Autores principales: | Ming Gao, Runmin Liu, Jie Mao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/668c5978e05a4c63a6db624176ed2e57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A STUDY ON COMPARATIVE YIELDS OF STANDARD SHORT TERM ELECTROENCEPHALOGRAM AND LONG TERM ELECTROENCEPHALOGRAM RECORDING IN SUSPECTED EPILEPSY PATIENTS
por: Saima Shafait, et al.
Publicado: (2021) -
Data Enhancement via Low-Rank Matrix Reconstruction in Pulsed Thermography for Carbon-Fibre-Reinforced Polymers
por: Samira Ebrahimi, et al.
Publicado: (2021) -
Psychological profile in noise-induced hearing loss patients: a pilot study
por: M. V. Kuleshova, et al.
Publicado: (2021) -
Noise-Robust MRI Upsampling Using Adaptive Local Steering Kernel
por: Jing Hu, et al.
Publicado: (2020) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Jing-Shan Huang, et al.
Publicado: (2021)