PKA and AKIP1 interact to mediate cAMP-driven COX-2 expression: A potentially pivotal interaction in preterm and term labour.

Previously, we showed that cAMP increased COX-2 expression in myometrial cells via MAPK. Here, we have extended these observations, using primary myometrial cell cultures to show that the cAMP agonist, forskolin, enhances IL-1β-driven COX-2 expression. We then explored the role of A-kinase interacti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Angela Yulia, Natasha Singh, Alice J Varley, Kaiyu Lei, Danijela Markovic, Suren R Sooranna, Mark R Johnson
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/66a0017ab8f44b5e861fba61b10e4c54
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:66a0017ab8f44b5e861fba61b10e4c54
record_format dspace
spelling oai:doaj.org-article:66a0017ab8f44b5e861fba61b10e4c542021-12-02T20:07:04ZPKA and AKIP1 interact to mediate cAMP-driven COX-2 expression: A potentially pivotal interaction in preterm and term labour.1932-620310.1371/journal.pone.0252720https://doaj.org/article/66a0017ab8f44b5e861fba61b10e4c542021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0252720https://doaj.org/toc/1932-6203Previously, we showed that cAMP increased COX-2 expression in myometrial cells via MAPK. Here, we have extended these observations, using primary myometrial cell cultures to show that the cAMP agonist, forskolin, enhances IL-1β-driven COX-2 expression. We then explored the role of A-kinase interacting protein (AKIP1), which modulates the effect of PKA on p65 activation. AKIP1 knockdown reversed the effect of forskolin, such that its addition inhibited IL-1β-induced COX-2 mRNA expression and reduced the IL-1β-induced increase in nuclear levels of p65 and c-jun. Forskolin alone and with IL-1β increased IκBα mRNA expression suggesting that in the context of inflammation and in the presence of AKIP1, cAMP enhances p65 activation. AKIP1 knockdown reversed these changes. Interestingly, AKIP1 knockdown had minimal effect on the ability of forskolin to repress either basal OTR expression or IL-1β-stimulated OTR mRNA expression. AKIP1 was up-regulated by IL-1β, but not stretch and was repressed by cAMP. The mRNA expression of AKIP1 increased in early labour in tandem with an increase in COX-2 mRNA and protein. AKIP1 protein levels were also increased with inflammation and stretch-induced preterm labour. Our results identify a second important cAMP effector-switch occurring at term in human myometrium and suggest that a hitherto unrecognized interaction may exist between AKIP1, NFκB and AP-1. These data add to the proposition that cAMP acts as a key regulator of human myometrial contractility.Angela YuliaNatasha SinghAlice J VarleyKaiyu LeiDanijela MarkovicSuren R SoorannaMark R JohnsonPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0252720 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Angela Yulia
Natasha Singh
Alice J Varley
Kaiyu Lei
Danijela Markovic
Suren R Sooranna
Mark R Johnson
PKA and AKIP1 interact to mediate cAMP-driven COX-2 expression: A potentially pivotal interaction in preterm and term labour.
description Previously, we showed that cAMP increased COX-2 expression in myometrial cells via MAPK. Here, we have extended these observations, using primary myometrial cell cultures to show that the cAMP agonist, forskolin, enhances IL-1β-driven COX-2 expression. We then explored the role of A-kinase interacting protein (AKIP1), which modulates the effect of PKA on p65 activation. AKIP1 knockdown reversed the effect of forskolin, such that its addition inhibited IL-1β-induced COX-2 mRNA expression and reduced the IL-1β-induced increase in nuclear levels of p65 and c-jun. Forskolin alone and with IL-1β increased IκBα mRNA expression suggesting that in the context of inflammation and in the presence of AKIP1, cAMP enhances p65 activation. AKIP1 knockdown reversed these changes. Interestingly, AKIP1 knockdown had minimal effect on the ability of forskolin to repress either basal OTR expression or IL-1β-stimulated OTR mRNA expression. AKIP1 was up-regulated by IL-1β, but not stretch and was repressed by cAMP. The mRNA expression of AKIP1 increased in early labour in tandem with an increase in COX-2 mRNA and protein. AKIP1 protein levels were also increased with inflammation and stretch-induced preterm labour. Our results identify a second important cAMP effector-switch occurring at term in human myometrium and suggest that a hitherto unrecognized interaction may exist between AKIP1, NFκB and AP-1. These data add to the proposition that cAMP acts as a key regulator of human myometrial contractility.
format article
author Angela Yulia
Natasha Singh
Alice J Varley
Kaiyu Lei
Danijela Markovic
Suren R Sooranna
Mark R Johnson
author_facet Angela Yulia
Natasha Singh
Alice J Varley
Kaiyu Lei
Danijela Markovic
Suren R Sooranna
Mark R Johnson
author_sort Angela Yulia
title PKA and AKIP1 interact to mediate cAMP-driven COX-2 expression: A potentially pivotal interaction in preterm and term labour.
title_short PKA and AKIP1 interact to mediate cAMP-driven COX-2 expression: A potentially pivotal interaction in preterm and term labour.
title_full PKA and AKIP1 interact to mediate cAMP-driven COX-2 expression: A potentially pivotal interaction in preterm and term labour.
title_fullStr PKA and AKIP1 interact to mediate cAMP-driven COX-2 expression: A potentially pivotal interaction in preterm and term labour.
title_full_unstemmed PKA and AKIP1 interact to mediate cAMP-driven COX-2 expression: A potentially pivotal interaction in preterm and term labour.
title_sort pka and akip1 interact to mediate camp-driven cox-2 expression: a potentially pivotal interaction in preterm and term labour.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/66a0017ab8f44b5e861fba61b10e4c54
work_keys_str_mv AT angelayulia pkaandakip1interacttomediatecampdrivencox2expressionapotentiallypivotalinteractioninpretermandtermlabour
AT natashasingh pkaandakip1interacttomediatecampdrivencox2expressionapotentiallypivotalinteractioninpretermandtermlabour
AT alicejvarley pkaandakip1interacttomediatecampdrivencox2expressionapotentiallypivotalinteractioninpretermandtermlabour
AT kaiyulei pkaandakip1interacttomediatecampdrivencox2expressionapotentiallypivotalinteractioninpretermandtermlabour
AT danijelamarkovic pkaandakip1interacttomediatecampdrivencox2expressionapotentiallypivotalinteractioninpretermandtermlabour
AT surenrsooranna pkaandakip1interacttomediatecampdrivencox2expressionapotentiallypivotalinteractioninpretermandtermlabour
AT markrjohnson pkaandakip1interacttomediatecampdrivencox2expressionapotentiallypivotalinteractioninpretermandtermlabour
_version_ 1718375306649141248