Most Caenorhabditis elegans microRNAs are individually not essential for development or viability.

MicroRNAs (miRNAs), a large class of short noncoding RNAs found in many plants and animals, often act to post-transcriptionally inhibit gene expression. We report the generation of deletion mutations in 87 miRNA genes in Caenorhabditis elegans, expanding the number of mutated miRNA genes to 95, or 8...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Eric A Miska, Ezequiel Alvarez-Saavedra, Allison L Abbott, Nelson C Lau, Andrew B Hellman, Shannon M McGonagle, David P Bartel, Victor R Ambros, H Robert Horvitz
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2007
Materias:
Acceso en línea:https://doaj.org/article/66adfa1501d9497e90c6c7944b050fa3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:MicroRNAs (miRNAs), a large class of short noncoding RNAs found in many plants and animals, often act to post-transcriptionally inhibit gene expression. We report the generation of deletion mutations in 87 miRNA genes in Caenorhabditis elegans, expanding the number of mutated miRNA genes to 95, or 83% of known C. elegans miRNAs. We find that the majority of miRNAs are not essential for the viability or development of C. elegans, and mutations in most miRNA genes do not result in grossly abnormal phenotypes. These observations are consistent with the hypothesis that there is significant functional redundancy among miRNAs or among gene pathways regulated by miRNAs. This study represents the first comprehensive genetic analysis of miRNA function in any organism and provides a unique, permanent resource for the systematic study of miRNAs.