Monitoring and Quality Control of Stud Welding
This study is conducted to carry out a straightforward way appropriate for quality monitoring and stability of arc stud welding process, followed by a number of procedures to control the quality of welded samples, namely torque destructive testing and visual inspection context. Those procedures we...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Al-Khwarizmi College of Engineering – University of Baghdad
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/66b98cdfb50045d08a65908f7f64ba4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:66b98cdfb50045d08a65908f7f64ba4c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:66b98cdfb50045d08a65908f7f64ba4c2021-12-02T06:35:45ZMonitoring and Quality Control of Stud Welding1818-11712312-0789https://doaj.org/article/66b98cdfb50045d08a65908f7f64ba4c2009-03-01T00:00:00Zhttp://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/520https://doaj.org/toc/1818-1171https://doaj.org/toc/2312-0789 This study is conducted to carry out a straightforward way appropriate for quality monitoring and stability of arc stud welding process, followed by a number of procedures to control the quality of welded samples, namely torque destructive testing and visual inspection context. Those procedures were being performed to support the monitoring system and verify its validity. Thus, continuous on-line monitoring guarantees earlier discovering stud welding defects and avoiding weld repeatability. On-line welding electronic monitoring system is for non destructive determining if a just completed weld is satisfactory or unsatisfactory, depending on welding current peak value detected by the system. Also, it has been observed significant harmonize which is mutually linking the monitored current peak values and quality control measures. So this concept is accordingly contributed in the process of supporting the fundamental objective of this research. On the other hand, two feed-forward neural networks have been developed for monitoring and control arc stud welding quality. First network predicts two output quality parameters (current peak value) and (torque testing value at failure). Second, predicts one output quality parameter (visual inspection). Networks have been trained to a set of data, which made them ready to receive new information for subsequent quality parameters prediction. Both networks showed up good response and acceptable results. Nabeel K. Abid Al-SahibHussam K. Abdul AmeerSaif Ghazy Faisal IbrahimAl-Khwarizmi College of Engineering – University of BaghdadarticleChemical engineeringTP155-156Engineering (General). Civil engineering (General)TA1-2040ENAl-Khawarizmi Engineering Journal, Vol 5, Iss 1 (2009) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Chemical engineering TP155-156 Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
Chemical engineering TP155-156 Engineering (General). Civil engineering (General) TA1-2040 Nabeel K. Abid Al-Sahib Hussam K. Abdul Ameer Saif Ghazy Faisal Ibrahim Monitoring and Quality Control of Stud Welding |
description |
This study is conducted to carry out a straightforward way appropriate for quality monitoring and stability of arc stud welding process, followed by a number of procedures to control the quality of welded samples, namely torque destructive testing and visual inspection context. Those procedures were being performed to support the monitoring system and verify its validity. Thus, continuous on-line monitoring guarantees earlier discovering stud welding defects and avoiding weld repeatability. On-line welding electronic monitoring system is for non destructive determining if a just completed weld is satisfactory or unsatisfactory, depending on welding current peak value detected by the system. Also, it has been observed significant harmonize which is mutually linking the monitored current peak values and quality control measures. So this concept is accordingly contributed in the process of supporting the fundamental objective of this research. On the other hand, two feed-forward neural networks have been developed for monitoring and control arc stud welding quality. First network predicts two output quality parameters (current peak value) and (torque testing value at failure). Second, predicts one output quality parameter (visual inspection). Networks have been trained to a set of data, which made them ready to receive new information for subsequent quality parameters prediction. Both networks showed up good response and acceptable results.
|
format |
article |
author |
Nabeel K. Abid Al-Sahib Hussam K. Abdul Ameer Saif Ghazy Faisal Ibrahim |
author_facet |
Nabeel K. Abid Al-Sahib Hussam K. Abdul Ameer Saif Ghazy Faisal Ibrahim |
author_sort |
Nabeel K. Abid Al-Sahib |
title |
Monitoring and Quality Control of Stud Welding |
title_short |
Monitoring and Quality Control of Stud Welding |
title_full |
Monitoring and Quality Control of Stud Welding |
title_fullStr |
Monitoring and Quality Control of Stud Welding |
title_full_unstemmed |
Monitoring and Quality Control of Stud Welding |
title_sort |
monitoring and quality control of stud welding |
publisher |
Al-Khwarizmi College of Engineering – University of Baghdad |
publishDate |
2009 |
url |
https://doaj.org/article/66b98cdfb50045d08a65908f7f64ba4c |
work_keys_str_mv |
AT nabeelkabidalsahib monitoringandqualitycontrolofstudwelding AT hussamkabdulameer monitoringandqualitycontrolofstudwelding AT saifghazyfaisalibrahim monitoringandqualitycontrolofstudwelding |
_version_ |
1718399817133064192 |