Mutagenic and cytotoxic properties of oxidation products of 5-methylcytosine revealed by next-generation sequencing.
5-methylcytosine (5-mC) can be sequentially oxidized to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and finally to 5-carboxylcytosine (5-caC), which is thought to function in active DNA cytosine demethylation in mammals. Although the roles of 5-mC in epigenetic regulation of gene expr...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/66d7240d5cd04d0fbd511d3388ea3b33 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | 5-methylcytosine (5-mC) can be sequentially oxidized to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and finally to 5-carboxylcytosine (5-caC), which is thought to function in active DNA cytosine demethylation in mammals. Although the roles of 5-mC in epigenetic regulation of gene expression are well established, the effects of 5-hmC, 5-foC and 5-caC on DNA replication remain unclear. Here we report a systematic study on how these cytosine derivatives (5-hmC, 5-foC and 5-caC) perturb the efficiency and accuracy of DNA replication using shuttle vector technology in conjugation with next-g sequencing. Our results demonstrated that, in Escherichia coli cells, all the cytosine derivatives could induce CT transition mutation at frequencies of 0.17%-1.12%, though no effect on replication efficiency was observed. These findings provide an important new insight on the potential mutagenic properties of cytosine derivatives occurring as the intermediates of DNA demethylation. |
---|