NeuroSOFM: A Neuromorphic Self-Organizing Feature Map Heterogeneously Integrating RRAM and FeFET
Many currently available hardware implementations of the unsupervised self-organizing feature map (SOFM) algorithm utilize complementary metal–oxide–semiconductor (CMOS)-only circuits that often compromise key behaviors of the SOFM algorithm due to complexity. We propose a neur...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/66f3762c4a0945d7a60e92ccad61c13f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Many currently available hardware implementations of the unsupervised self-organizing feature map (SOFM) algorithm utilize complementary metal–oxide–semiconductor (CMOS)-only circuits that often compromise key behaviors of the SOFM algorithm due to complexity. We propose a neuromorphic architecture harnessing the unique properties of ferroelectric field-effect transistors (FeFETs) and gated-resistive random access memory (RRAM) for in-memory computing to implement the SOFM algorithm. The FeFET-based synapse, organized in a novel circuit, is able to compute the input-weight Euclidean error in memory via the saturation drain current. The self-decaying states of the gated-RRAM allow for a self-decaying neighborhood and learning rate implementation to allow for convergence and lifelong learning. This novel architecture is able to successfully cluster benchmarks (RGB colors and MNIST handwritten digits) and real-life datasets, such as COVID-19 patient chest X-rays completely unsupervised. The architecture also demonstrates a significant amount of robustness to device variability and damaged neurons. In addition, the proposed architecture is completely parallelized and provides a power-efficient platform for implementing the SOFM algorithm. |
---|