DNCON2_Inter: predicting interchain contacts for homodimeric and homomultimeric protein complexes using multiple sequence alignments of monomers and deep learning
Abstract Deep learning methods that achieved great success in predicting intrachain residue-residue contacts have been applied to predict interchain contacts between proteins. However, these methods require multiple sequence alignments (MSAs) of a pair of interacting proteins (dimers) as input, whic...
Guardado en:
Autores principales: | Farhan Quadir, Raj S. Roy, Randal Halfmann, Jianlin Cheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/66f5d941ac704c18846c3af31b7d6767 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effect of interchain interaction on the electrical conductivity and thermopower of TTT2I3 crystals
por: Sanduleac, Ionel, et al.
Publicado: (2013) -
Structure of the homodimeric androgen receptor ligand-binding domain
por: Marta Nadal, et al.
Publicado: (2017) -
Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction
por: Aashish Jain, et al.
Publicado: (2021) -
Symmetry breaking during homodimeric assembly activates an E3 ubiquitin ligase
por: Zhaofeng Ye, et al.
Publicado: (2017) -
An empirical evaluation of functional alignment using inter-subject decoding
por: Thomas Bazeille, et al.
Publicado: (2021)