A Novel Restricted Boltzmann Machine Training Algorithm With Dynamic Tempering Chains
Restricted Boltzmann machines (RBMs) are commonly used as pre-training methods for deep learning models. Contrastive divergence (CD) and parallel tempering (PT) are traditional training algorithms of RBMs. However, these two algorithms have shortcomings in processing high-dimensional and complex dat...
Guardado en:
Autores principales: | Xinyu Li, Xiaoguang Gao, Chenfeng Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/670076506bd441819c7d275d7b5041bf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Differential equations with tempered Ψ-Caputo fractional derivative
por: Milan Medveď, et al.
Publicado: (2021) -
Dung decomposition and associated beetles in a fragmented temperate forest
por: BUSTAMANTE-SÁNCHEZ,MARCELA A., et al.
Publicado: (2004) -
BIOCHEMICAL PROPERTIES IN VASCULAR EPIPHYTES SUBSTRATE FROM A TEMPERATE FOREST OF CHILE
por: Reyes,Francisco, et al.
Publicado: (2010) -
Temperate japonica rice (Oryza sativa L.) breeding: History, present and future challenges
por: Cordero-Lara,Karla I.
Publicado: (2020) -
GGE biplot analysis of multi-environment yield trials of rice produced in a temperate climate
por: Donoso-Ñanculao,Gabriel, et al.
Publicado: (2016)