On the general relationship between plant height and aboveground biomass of vegetation stands in contrasted ecosystems.

Ecological communities are unique assemblages of species that coexist in consequence of multi-causal processes that have proven hard to generalize. One possible exception are processes that control the biomass packing of vegetation stands; the amount of aboveground standing biomass expressed per uni...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Raphaël Proulx
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6700d6a1745646978881434cb8245f21
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Ecological communities are unique assemblages of species that coexist in consequence of multi-causal processes that have proven hard to generalize. One possible exception are processes that control the biomass packing of vegetation stands; the amount of aboveground standing biomass expressed per unit volume. In this paper, I investigated the empirical and geometric underpinnings of biomass packing in terrestrial plant communities. I support that biomass packing in nature peaks around 1 kg m-3 across contrasted contexts, ranging from grasslands to forest ecosystems. Using published experimental and long-term survey data, I show that expressing biomass per unit volume cancels the effects of air temperature, species richness and soil fertility on aboveground stocks, thus providing a general comparative measure of storage efficiency in plant communities.