CT image segmentation for inflamed and fibrotic lungs using a multi-resolution convolutional neural network
Abstract The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled...
Guardado en:
Autores principales: | Sarah E. Gerard, Jacob Herrmann, Yi Xin, Kevin T. Martin, Emanuele Rezoagli, Davide Ippolito, Giacomo Bellani, Maurizio Cereda, Junfeng Guo, Eric A. Hoffman, David W. Kaczka, Joseph M. Reinhardt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67123f2fad0c4e4f98f42b8ab456559b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network
por: Raabid Hussain, et al.
Publicado: (2021) -
Biochemical Mapping of the Inflamed Human Dental Pulp
por: Konstantina Kritikou, et al.
Publicado: (2021) -
Heme Peroxidases at Unperturbed and Inflamed Mucous Surfaces
por: Jürgen Arnhold
Publicado: (2021) -
A case of unilateral inflamed plaques with comedones of the face
por: Marco A. Chessa, et al.
Publicado: (2018) -
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
por: Sajith Kecheril Sadanandan, et al.
Publicado: (2017)