Depth Data Denoising in Optical Laser Based Sensors for Metal Sheet Flatness Measurement: A Deep Learning Approach
Surface flatness assessment is necessary for quality control of metal sheets manufactured from steel coils by roll leveling and cutting. Mechanical-contact-based flatness sensors are being replaced by modern laser-based optical sensors that deliver accurate and dense reconstruction of metal sheet su...
Guardado en:
Autores principales: | Marcos Alonso, Daniel Maestro, Alberto Izaguirre, Imanol Andonegui, Manuel Graña |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/671d0161841d42caa5a0e0910713ca97 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
por: Minghuan Hu, et al.
Publicado: (2021) -
Study on Reconstruction and Feature Tracking of Silicone Heart 3D Surface
por: Ziyan Zhang, et al.
Publicado: (2021) -
Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
por: Huihui Xu, et al.
Publicado: (2021) -
A Review of Benchmark Datasets and Training Loss Functions in Neural Depth Estimation
por: Faisal Khan, et al.
Publicado: (2021) -
Concurrent Video Denoising and Deblurring for Dynamic Scenes
por: Efklidis Katsaros, et al.
Publicado: (2021)