Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach
Blue carbon ecosystems are key for successful global climate change mitigation; however, they are one of the most threatened ecosystems on Earth. Thus, this study mapped the climatic and human pressures on the blue carbon ecosystems in Indonesia using multi-source spatial datasets. Data on moderate...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6723894493264183a4934238f78809ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6723894493264183a4934238f78809ee |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6723894493264183a4934238f78809ee2021-11-25T17:53:11ZAssessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach10.3390/ijgi101107782220-9964https://doaj.org/article/6723894493264183a4934238f78809ee2021-11-01T00:00:00Zhttps://www.mdpi.com/2220-9964/10/11/778https://doaj.org/toc/2220-9964Blue carbon ecosystems are key for successful global climate change mitigation; however, they are one of the most threatened ecosystems on Earth. Thus, this study mapped the climatic and human pressures on the blue carbon ecosystems in Indonesia using multi-source spatial datasets. Data on moderate resolution imaging spectroradiometer (MODIS) ocean color standard mapped images, VIIRS (visible, infrared imaging radiometer suite) boat detection (VBD), global artificial impervious area (GAIA), MODIS surface reflectance (MOD09GA), MODIS land surface temperature (MOD11A2), and MODIS vegetation indices (MOD13A2) were combined using remote sensing and spatial analysis techniques to identify potential stresses. La Niña and El Niño phenomena caused sea surface temperature deviations to reach −0.5 to +1.2 °C. In contrast, chlorophyll-a deviations reached 22,121 to +0.5 mg m<sup>−3</sup>. Regarding fishing activities, most areas were under exploitation and relatively sustained. Concerning land activities, mangrove deforestation occurred in 560.69 km<sup>2</sup> of the area during 2007–2016, as confirmed by a decrease of 84.9% in risk-screening environmental indicators. Overall, the potential pressures on Indonesia’s blue carbon ecosystems are varied geographically. The framework of this study can be efficiently adopted to support coastal and small islands zonation planning, conservation prioritization, and marine fisheries enhancement.Adam Irwansyah FauziAnjar Dimara SaktiBalqis Falah RobbaniMita RistiyaniRahiska Tisa AgustinEmi YatiMuhammad Ulin NuhaNova AnikaRaden PutraDiyanti Isnani SiregarBudhi Agung PrasetyoAtriyon JulzarikaKetut WikantikaMDPI AGarticlemarineseagrassmangrovescoral reefsSDGsremote sensingGeography (General)G1-922ENISPRS International Journal of Geo-Information, Vol 10, Iss 778, p 778 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
marine seagrass mangroves coral reefs SDGs remote sensing Geography (General) G1-922 |
spellingShingle |
marine seagrass mangroves coral reefs SDGs remote sensing Geography (General) G1-922 Adam Irwansyah Fauzi Anjar Dimara Sakti Balqis Falah Robbani Mita Ristiyani Rahiska Tisa Agustin Emi Yati Muhammad Ulin Nuha Nova Anika Raden Putra Diyanti Isnani Siregar Budhi Agung Prasetyo Atriyon Julzarika Ketut Wikantika Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach |
description |
Blue carbon ecosystems are key for successful global climate change mitigation; however, they are one of the most threatened ecosystems on Earth. Thus, this study mapped the climatic and human pressures on the blue carbon ecosystems in Indonesia using multi-source spatial datasets. Data on moderate resolution imaging spectroradiometer (MODIS) ocean color standard mapped images, VIIRS (visible, infrared imaging radiometer suite) boat detection (VBD), global artificial impervious area (GAIA), MODIS surface reflectance (MOD09GA), MODIS land surface temperature (MOD11A2), and MODIS vegetation indices (MOD13A2) were combined using remote sensing and spatial analysis techniques to identify potential stresses. La Niña and El Niño phenomena caused sea surface temperature deviations to reach −0.5 to +1.2 °C. In contrast, chlorophyll-a deviations reached 22,121 to +0.5 mg m<sup>−3</sup>. Regarding fishing activities, most areas were under exploitation and relatively sustained. Concerning land activities, mangrove deforestation occurred in 560.69 km<sup>2</sup> of the area during 2007–2016, as confirmed by a decrease of 84.9% in risk-screening environmental indicators. Overall, the potential pressures on Indonesia’s blue carbon ecosystems are varied geographically. The framework of this study can be efficiently adopted to support coastal and small islands zonation planning, conservation prioritization, and marine fisheries enhancement. |
format |
article |
author |
Adam Irwansyah Fauzi Anjar Dimara Sakti Balqis Falah Robbani Mita Ristiyani Rahiska Tisa Agustin Emi Yati Muhammad Ulin Nuha Nova Anika Raden Putra Diyanti Isnani Siregar Budhi Agung Prasetyo Atriyon Julzarika Ketut Wikantika |
author_facet |
Adam Irwansyah Fauzi Anjar Dimara Sakti Balqis Falah Robbani Mita Ristiyani Rahiska Tisa Agustin Emi Yati Muhammad Ulin Nuha Nova Anika Raden Putra Diyanti Isnani Siregar Budhi Agung Prasetyo Atriyon Julzarika Ketut Wikantika |
author_sort |
Adam Irwansyah Fauzi |
title |
Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach |
title_short |
Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach |
title_full |
Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach |
title_fullStr |
Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach |
title_full_unstemmed |
Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach |
title_sort |
assessing potential climatic and human pressures in indonesian coastal ecosystems using a spatial data-driven approach |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/6723894493264183a4934238f78809ee |
work_keys_str_mv |
AT adamirwansyahfauzi assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT anjardimarasakti assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT balqisfalahrobbani assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT mitaristiyani assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT rahiskatisaagustin assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT emiyati assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT muhammadulinnuha assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT novaanika assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT radenputra assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT diyantiisnanisiregar assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT budhiagungprasetyo assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT atriyonjulzarika assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach AT ketutwikantika assessingpotentialclimaticandhumanpressuresinindonesiancoastalecosystemsusingaspatialdatadrivenapproach |
_version_ |
1718411865712754688 |