Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1
Abstract Nitro-substituted 1,3-benzothiazinones (nitro-BTZs) are mechanism-based covalent inhibitors of Mycobacterium tuberculosis decaprenylphosphoryl-β-D-ribose-2′-oxidase (DprE1) with strong antimycobacterial properties. We prepared a number of oxidized and reduced forms of nitro-BTZs to probe th...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6734673c6fd94ca783944bd94b6c5f5b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6734673c6fd94ca783944bd94b6c5f5b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6734673c6fd94ca783944bd94b6c5f5b2021-12-02T15:08:41ZNovel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE110.1038/s41598-018-31316-62045-2322https://doaj.org/article/6734673c6fd94ca783944bd94b6c5f5b2018-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-31316-6https://doaj.org/toc/2045-2322Abstract Nitro-substituted 1,3-benzothiazinones (nitro-BTZs) are mechanism-based covalent inhibitors of Mycobacterium tuberculosis decaprenylphosphoryl-β-D-ribose-2′-oxidase (DprE1) with strong antimycobacterial properties. We prepared a number of oxidized and reduced forms of nitro-BTZs to probe the mechanism of inactivation of the enzyme and to identify opportunities for further chemistry. The kinetics of inactivation of DprE1 was examined using an enzymatic assay that monitored reaction progress up to 100 min, permitting compound ranking according to k inact/K i values. The side-chain at the 2-position and heteroatom identity at the 1-position of the BTZs were found to be important for inhibitory activity. We obtained crystal structures with several compounds covalently bound. The data suggest that steps upstream from the covalent end-points are likely the key determinants of potency and reactivity. The results of protein mass spectrometry using a 7-chloro-nitro-BTZ suggest that nucleophilic reactions at the 7-position do not operate and support a previously proposed mechanism in which BTZ activation by a reduced flavin intermediate is required. Unexpectedly, a hydroxylamino-BTZ showed time-dependent inhibition and mass spectrometry corroborated that this hydroxylamino-BTZ is a mechanism-based suicide inhibitor of DprE1. With this BTZ derivative, we propose a new covalent mechanism of inhibition of DprE1 that takes advantage of the oxidation cycle of the enzyme.Adrian RichterInes RudolphUte MöllmannKerstin VoigtChun-wa ChungOnkar M. P. SinghMichael ReesAlfonso Mendoza-LosanaRobert BatesLluís BallellSarah BattNatacha VeerapenKlaus FüttererGurdyal BesraPeter ImmingArgyrides ArgyrouNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-12 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Adrian Richter Ines Rudolph Ute Möllmann Kerstin Voigt Chun-wa Chung Onkar M. P. Singh Michael Rees Alfonso Mendoza-Losana Robert Bates Lluís Ballell Sarah Batt Natacha Veerapen Klaus Fütterer Gurdyal Besra Peter Imming Argyrides Argyrou Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1 |
description |
Abstract Nitro-substituted 1,3-benzothiazinones (nitro-BTZs) are mechanism-based covalent inhibitors of Mycobacterium tuberculosis decaprenylphosphoryl-β-D-ribose-2′-oxidase (DprE1) with strong antimycobacterial properties. We prepared a number of oxidized and reduced forms of nitro-BTZs to probe the mechanism of inactivation of the enzyme and to identify opportunities for further chemistry. The kinetics of inactivation of DprE1 was examined using an enzymatic assay that monitored reaction progress up to 100 min, permitting compound ranking according to k inact/K i values. The side-chain at the 2-position and heteroatom identity at the 1-position of the BTZs were found to be important for inhibitory activity. We obtained crystal structures with several compounds covalently bound. The data suggest that steps upstream from the covalent end-points are likely the key determinants of potency and reactivity. The results of protein mass spectrometry using a 7-chloro-nitro-BTZ suggest that nucleophilic reactions at the 7-position do not operate and support a previously proposed mechanism in which BTZ activation by a reduced flavin intermediate is required. Unexpectedly, a hydroxylamino-BTZ showed time-dependent inhibition and mass spectrometry corroborated that this hydroxylamino-BTZ is a mechanism-based suicide inhibitor of DprE1. With this BTZ derivative, we propose a new covalent mechanism of inhibition of DprE1 that takes advantage of the oxidation cycle of the enzyme. |
format |
article |
author |
Adrian Richter Ines Rudolph Ute Möllmann Kerstin Voigt Chun-wa Chung Onkar M. P. Singh Michael Rees Alfonso Mendoza-Losana Robert Bates Lluís Ballell Sarah Batt Natacha Veerapen Klaus Fütterer Gurdyal Besra Peter Imming Argyrides Argyrou |
author_facet |
Adrian Richter Ines Rudolph Ute Möllmann Kerstin Voigt Chun-wa Chung Onkar M. P. Singh Michael Rees Alfonso Mendoza-Losana Robert Bates Lluís Ballell Sarah Batt Natacha Veerapen Klaus Fütterer Gurdyal Besra Peter Imming Argyrides Argyrou |
author_sort |
Adrian Richter |
title |
Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1 |
title_short |
Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1 |
title_full |
Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1 |
title_fullStr |
Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1 |
title_full_unstemmed |
Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1 |
title_sort |
novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with mycobacterium tuberculosis dpre1 |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/6734673c6fd94ca783944bd94b6c5f5b |
work_keys_str_mv |
AT adrianrichter novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT inesrudolph novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT utemollmann novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT kerstinvoigt novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT chunwachung novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT onkarmpsingh novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT michaelrees novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT alfonsomendozalosana novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT robertbates novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT lluisballell novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT sarahbatt novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT natachaveerapen novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT klausfutterer novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT gurdyalbesra novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT peterimming novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 AT argyridesargyrou novelinsightintothereactionofnitronitrosoandhydroxylaminobenzothiazinonesandofbenzoxacinoneswithmycobacteriumtuberculosisdpre1 |
_version_ |
1718388062898094080 |