Deconvoluting kernel density estimation and regression for locally differentially private data
Abstract Local differential privacy has become the gold-standard of privacy literature for gathering or releasing sensitive individual data points in a privacy-preserving manner. However, locally differential data can twist the probability density of the data because of the additive noise used to en...
Guardado en:
Autor principal: | Farhad Farokhi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/673d692598a3489a96ad65da8d9b8a30 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Differentially private density estimation with skew-normal mixtures model
por: Weisan Wu
Publicado: (2021) -
Modified Liu estimators in the linear regression model: An application to Tobacco data.
por: Iqra Babar, et al.
Publicado: (2021) -
An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators
por: Mirosław Kornatka, et al.
Publicado: (2021) -
Non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution
por: Zhouping Wang, et al.
Publicado: (2018) -
Adaptive kernel fuzzy clustering for missing data.
por: Anny K G Rodrigues, et al.
Publicado: (2021)