Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles
Abstract Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/676084dde33b4ce08c1c82e7059af7c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:676084dde33b4ce08c1c82e7059af7c3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:676084dde33b4ce08c1c82e7059af7c32021-12-02T15:08:54ZSpin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles10.1038/s41598-018-21626-02045-2322https://doaj.org/article/676084dde33b4ce08c1c82e7059af7c32018-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-21626-0https://doaj.org/toc/2045-2322Abstract Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface.Samuel D. OberdickAhmed AbdelgawadCarlos MoyaSamaneh Mesbahi-VaseyDemie KepaptsoglouVlado K. LazarovRichard F. L. EvansDaniel MeilakElizabeth SkoropataJohan van LieropIan Hunt-IsaakHillary PanYumi IjiriKathryn L. KryckaJulie A. BorchersSara A. MajetichNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-12 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Samuel D. Oberdick Ahmed Abdelgawad Carlos Moya Samaneh Mesbahi-Vasey Demie Kepaptsoglou Vlado K. Lazarov Richard F. L. Evans Daniel Meilak Elizabeth Skoropata Johan van Lierop Ian Hunt-Isaak Hillary Pan Yumi Ijiri Kathryn L. Krycka Julie A. Borchers Sara A. Majetich Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles |
description |
Abstract Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface. |
format |
article |
author |
Samuel D. Oberdick Ahmed Abdelgawad Carlos Moya Samaneh Mesbahi-Vasey Demie Kepaptsoglou Vlado K. Lazarov Richard F. L. Evans Daniel Meilak Elizabeth Skoropata Johan van Lierop Ian Hunt-Isaak Hillary Pan Yumi Ijiri Kathryn L. Krycka Julie A. Borchers Sara A. Majetich |
author_facet |
Samuel D. Oberdick Ahmed Abdelgawad Carlos Moya Samaneh Mesbahi-Vasey Demie Kepaptsoglou Vlado K. Lazarov Richard F. L. Evans Daniel Meilak Elizabeth Skoropata Johan van Lierop Ian Hunt-Isaak Hillary Pan Yumi Ijiri Kathryn L. Krycka Julie A. Borchers Sara A. Majetich |
author_sort |
Samuel D. Oberdick |
title |
Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles |
title_short |
Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles |
title_full |
Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles |
title_fullStr |
Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles |
title_full_unstemmed |
Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles |
title_sort |
spin canting across core/shell fe3o4/mnxfe3−xo4 nanoparticles |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/676084dde33b4ce08c1c82e7059af7c3 |
work_keys_str_mv |
AT samueldoberdick spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT ahmedabdelgawad spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT carlosmoya spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT samanehmesbahivasey spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT demiekepaptsoglou spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT vladoklazarov spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT richardflevans spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT danielmeilak spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT elizabethskoropata spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT johanvanlierop spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT ianhuntisaak spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT hillarypan spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT yumiijiri spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT kathrynlkrycka spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT julieaborchers spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles AT saraamajetich spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles |
_version_ |
1718388002646917120 |