Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles

Abstract Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samuel D. Oberdick, Ahmed Abdelgawad, Carlos Moya, Samaneh Mesbahi-Vasey, Demie Kepaptsoglou, Vlado K. Lazarov, Richard F. L. Evans, Daniel Meilak, Elizabeth Skoropata, Johan van Lierop, Ian Hunt-Isaak, Hillary Pan, Yumi Ijiri, Kathryn L. Krycka, Julie A. Borchers, Sara A. Majetich
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/676084dde33b4ce08c1c82e7059af7c3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:676084dde33b4ce08c1c82e7059af7c3
record_format dspace
spelling oai:doaj.org-article:676084dde33b4ce08c1c82e7059af7c32021-12-02T15:08:54ZSpin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles10.1038/s41598-018-21626-02045-2322https://doaj.org/article/676084dde33b4ce08c1c82e7059af7c32018-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-21626-0https://doaj.org/toc/2045-2322Abstract Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface.Samuel D. OberdickAhmed AbdelgawadCarlos MoyaSamaneh Mesbahi-VaseyDemie KepaptsoglouVlado K. LazarovRichard F. L. EvansDaniel MeilakElizabeth SkoropataJohan van LieropIan Hunt-IsaakHillary PanYumi IjiriKathryn L. KryckaJulie A. BorchersSara A. MajetichNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-12 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Samuel D. Oberdick
Ahmed Abdelgawad
Carlos Moya
Samaneh Mesbahi-Vasey
Demie Kepaptsoglou
Vlado K. Lazarov
Richard F. L. Evans
Daniel Meilak
Elizabeth Skoropata
Johan van Lierop
Ian Hunt-Isaak
Hillary Pan
Yumi Ijiri
Kathryn L. Krycka
Julie A. Borchers
Sara A. Majetich
Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles
description Abstract Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface.
format article
author Samuel D. Oberdick
Ahmed Abdelgawad
Carlos Moya
Samaneh Mesbahi-Vasey
Demie Kepaptsoglou
Vlado K. Lazarov
Richard F. L. Evans
Daniel Meilak
Elizabeth Skoropata
Johan van Lierop
Ian Hunt-Isaak
Hillary Pan
Yumi Ijiri
Kathryn L. Krycka
Julie A. Borchers
Sara A. Majetich
author_facet Samuel D. Oberdick
Ahmed Abdelgawad
Carlos Moya
Samaneh Mesbahi-Vasey
Demie Kepaptsoglou
Vlado K. Lazarov
Richard F. L. Evans
Daniel Meilak
Elizabeth Skoropata
Johan van Lierop
Ian Hunt-Isaak
Hillary Pan
Yumi Ijiri
Kathryn L. Krycka
Julie A. Borchers
Sara A. Majetich
author_sort Samuel D. Oberdick
title Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles
title_short Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles
title_full Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles
title_fullStr Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles
title_full_unstemmed Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles
title_sort spin canting across core/shell fe3o4/mnxfe3−xo4 nanoparticles
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/676084dde33b4ce08c1c82e7059af7c3
work_keys_str_mv AT samueldoberdick spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT ahmedabdelgawad spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT carlosmoya spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT samanehmesbahivasey spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT demiekepaptsoglou spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT vladoklazarov spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT richardflevans spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT danielmeilak spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT elizabethskoropata spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT johanvanlierop spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT ianhuntisaak spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT hillarypan spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT yumiijiri spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT kathrynlkrycka spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT julieaborchers spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
AT saraamajetich spincantingacrosscoreshellfe3o4mnxfe3xo4nanoparticles
_version_ 1718388002646917120