RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates
In this work, we studied the impacts of transmitting light, nonlinear thermal, and micropolar fluid mechanics on a wire surface coating utilizing non-Newtonian viscoelastic flow. Models with temperature-dependent variable viscosity were used. The boundary layer equations governing the flow and heat...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6767d301e0c54ef8b34a96922785fa92 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this work, we studied the impacts of transmitting light, nonlinear thermal, and micropolar fluid mechanics on a wire surface coating utilizing non-Newtonian viscoelastic flow. Models with temperature-dependent variable viscosity were used. The boundary layer equations governing the flow and heat transport processes were solved using the Runge–Kutta fourth order method. A distinguished constituent of this study was the use of a porous matrix that acted as an insulator to reduce heat loss. In this paper we discuss the effects of numerous development parameters, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>,</mo><mo> </mo><mi>m</mi><mo>,</mo><mo> </mo><mi>Ω</mi><mo>,</mo><mo> </mo><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>r</mi></mrow></semantics></math></inline-formula> (non-Newtonian parameter, heat-producing parameter, viscosity parameter, variable viscosity parameter, porosity parameter, and Brinkman number, respectively). Furthermore, the effects of two other parameters, <i>D</i> and <i>M</i>, are also discussed as they relate to velocity and temperature distributions. We observed that the velocity profiles decreased with increasing values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>. Fluid velocity increased as the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>,</mo><mo> </mo><mi>B</mi><mi>r</mi><mo>,</mo><mo> </mo><mi>N</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> increased, while it decreased when the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Q</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> increased. For increasing values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>M</mi></semantics></math></inline-formula>, the temperature profile showed increasing behavior, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>r</mi><mrow><mo> </mo><mi>and</mi><mo> </mo></mrow><mi>Q</mi></mrow></semantics></math></inline-formula> showed decreasing behavior. Furthermore, the present work is validated by comparison with HAM and previously published work, with good results. |
---|