RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates

In this work, we studied the impacts of transmitting light, nonlinear thermal, and micropolar fluid mechanics on a wire surface coating utilizing non-Newtonian viscoelastic flow. Models with temperature-dependent variable viscosity were used. The boundary layer equations governing the flow and heat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zeeshan Khan, Waris Khan, Ilyas Khan, Nawa Alshammari, Nawaf N. Hamadneh
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/6767d301e0c54ef8b34a96922785fa92
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6767d301e0c54ef8b34a96922785fa92
record_format dspace
spelling oai:doaj.org-article:6767d301e0c54ef8b34a96922785fa922021-11-11T18:44:10ZRK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates10.3390/polym132136962073-4360https://doaj.org/article/6767d301e0c54ef8b34a96922785fa922021-10-01T00:00:00Zhttps://www.mdpi.com/2073-4360/13/21/3696https://doaj.org/toc/2073-4360In this work, we studied the impacts of transmitting light, nonlinear thermal, and micropolar fluid mechanics on a wire surface coating utilizing non-Newtonian viscoelastic flow. Models with temperature-dependent variable viscosity were used. The boundary layer equations governing the flow and heat transport processes were solved using the Runge–Kutta fourth order method. A distinguished constituent of this study was the use of a porous matrix that acted as an insulator to reduce heat loss. In this paper we discuss the effects of numerous development parameters, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>,</mo><mo> </mo><mi>m</mi><mo>,</mo><mo> </mo><mi>Ω</mi><mo>,</mo><mo> </mo><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>r</mi></mrow></semantics></math></inline-formula> (non-Newtonian parameter, heat-producing parameter, viscosity parameter, variable viscosity parameter, porosity parameter, and Brinkman number, respectively). Furthermore, the effects of two other parameters, <i>D</i> and <i>M</i>, are also discussed as they relate to velocity and temperature distributions. We observed that the velocity profiles decreased with increasing values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>. Fluid velocity increased as the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>,</mo><mo> </mo><mi>B</mi><mi>r</mi><mo>,</mo><mo> </mo><mi>N</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> increased, while it decreased when the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Q</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> increased. For increasing values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>M</mi></semantics></math></inline-formula>, the temperature profile showed increasing behavior, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>r</mi><mrow><mo> </mo><mi>and</mi><mo> </mo></mrow><mi>Q</mi></mrow></semantics></math></inline-formula> showed decreasing behavior. Furthermore, the present work is validated by comparison with HAM and previously published work, with good results.Zeeshan KhanWaris KhanIlyas KhanNawa AlshammariNawaf N. HamadnehMDPI AGarticleRK4 and HAM solutionsEyring–Powell fluidnon-Newtonian fluidtransverse MHD effectpermeable matrixtemperature-dependent viscosityOrganic chemistryQD241-441ENPolymers, Vol 13, Iss 3696, p 3696 (2021)
institution DOAJ
collection DOAJ
language EN
topic RK4 and HAM solutions
Eyring–Powell fluid
non-Newtonian fluid
transverse MHD effect
permeable matrix
temperature-dependent viscosity
Organic chemistry
QD241-441
spellingShingle RK4 and HAM solutions
Eyring–Powell fluid
non-Newtonian fluid
transverse MHD effect
permeable matrix
temperature-dependent viscosity
Organic chemistry
QD241-441
Zeeshan Khan
Waris Khan
Ilyas Khan
Nawa Alshammari
Nawaf N. Hamadneh
RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates
description In this work, we studied the impacts of transmitting light, nonlinear thermal, and micropolar fluid mechanics on a wire surface coating utilizing non-Newtonian viscoelastic flow. Models with temperature-dependent variable viscosity were used. The boundary layer equations governing the flow and heat transport processes were solved using the Runge–Kutta fourth order method. A distinguished constituent of this study was the use of a porous matrix that acted as an insulator to reduce heat loss. In this paper we discuss the effects of numerous development parameters, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>,</mo><mo> </mo><mi>m</mi><mo>,</mo><mo> </mo><mi>Ω</mi><mo>,</mo><mo> </mo><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>r</mi></mrow></semantics></math></inline-formula> (non-Newtonian parameter, heat-producing parameter, viscosity parameter, variable viscosity parameter, porosity parameter, and Brinkman number, respectively). Furthermore, the effects of two other parameters, <i>D</i> and <i>M</i>, are also discussed as they relate to velocity and temperature distributions. We observed that the velocity profiles decreased with increasing values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>. Fluid velocity increased as the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>,</mo><mo> </mo><mi>B</mi><mi>r</mi><mo>,</mo><mo> </mo><mi>N</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> increased, while it decreased when the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Q</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> increased. For increasing values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>M</mi></semantics></math></inline-formula>, the temperature profile showed increasing behavior, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>r</mi><mrow><mo> </mo><mi>and</mi><mo> </mo></mrow><mi>Q</mi></mrow></semantics></math></inline-formula> showed decreasing behavior. Furthermore, the present work is validated by comparison with HAM and previously published work, with good results.
format article
author Zeeshan Khan
Waris Khan
Ilyas Khan
Nawa Alshammari
Nawaf N. Hamadneh
author_facet Zeeshan Khan
Waris Khan
Ilyas Khan
Nawa Alshammari
Nawaf N. Hamadneh
author_sort Zeeshan Khan
title RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates
title_short RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates
title_full RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates
title_fullStr RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates
title_full_unstemmed RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates
title_sort rk4 and ham solutions of eyring–powell fluid coating material with temperature-dependent-viscosity impact of porous matrix on wire coating filled in coating die: cylindrical co-ordinates
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/6767d301e0c54ef8b34a96922785fa92
work_keys_str_mv AT zeeshankhan rk4andhamsolutionsofeyringpowellfluidcoatingmaterialwithtemperaturedependentviscosityimpactofporousmatrixonwirecoatingfilledincoatingdiecylindricalcoordinates
AT wariskhan rk4andhamsolutionsofeyringpowellfluidcoatingmaterialwithtemperaturedependentviscosityimpactofporousmatrixonwirecoatingfilledincoatingdiecylindricalcoordinates
AT ilyaskhan rk4andhamsolutionsofeyringpowellfluidcoatingmaterialwithtemperaturedependentviscosityimpactofporousmatrixonwirecoatingfilledincoatingdiecylindricalcoordinates
AT nawaalshammari rk4andhamsolutionsofeyringpowellfluidcoatingmaterialwithtemperaturedependentviscosityimpactofporousmatrixonwirecoatingfilledincoatingdiecylindricalcoordinates
AT nawafnhamadneh rk4andhamsolutionsofeyringpowellfluidcoatingmaterialwithtemperaturedependentviscosityimpactofporousmatrixonwirecoatingfilledincoatingdiecylindricalcoordinates
_version_ 1718431766194159616