RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates
In this work, we studied the impacts of transmitting light, nonlinear thermal, and micropolar fluid mechanics on a wire surface coating utilizing non-Newtonian viscoelastic flow. Models with temperature-dependent variable viscosity were used. The boundary layer equations governing the flow and heat...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6767d301e0c54ef8b34a96922785fa92 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6767d301e0c54ef8b34a96922785fa92 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6767d301e0c54ef8b34a96922785fa922021-11-11T18:44:10ZRK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates10.3390/polym132136962073-4360https://doaj.org/article/6767d301e0c54ef8b34a96922785fa922021-10-01T00:00:00Zhttps://www.mdpi.com/2073-4360/13/21/3696https://doaj.org/toc/2073-4360In this work, we studied the impacts of transmitting light, nonlinear thermal, and micropolar fluid mechanics on a wire surface coating utilizing non-Newtonian viscoelastic flow. Models with temperature-dependent variable viscosity were used. The boundary layer equations governing the flow and heat transport processes were solved using the Runge–Kutta fourth order method. A distinguished constituent of this study was the use of a porous matrix that acted as an insulator to reduce heat loss. In this paper we discuss the effects of numerous development parameters, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>,</mo><mo> </mo><mi>m</mi><mo>,</mo><mo> </mo><mi>Ω</mi><mo>,</mo><mo> </mo><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>r</mi></mrow></semantics></math></inline-formula> (non-Newtonian parameter, heat-producing parameter, viscosity parameter, variable viscosity parameter, porosity parameter, and Brinkman number, respectively). Furthermore, the effects of two other parameters, <i>D</i> and <i>M</i>, are also discussed as they relate to velocity and temperature distributions. We observed that the velocity profiles decreased with increasing values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>. Fluid velocity increased as the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>,</mo><mo> </mo><mi>B</mi><mi>r</mi><mo>,</mo><mo> </mo><mi>N</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> increased, while it decreased when the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Q</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> increased. For increasing values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>M</mi></semantics></math></inline-formula>, the temperature profile showed increasing behavior, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>r</mi><mrow><mo> </mo><mi>and</mi><mo> </mo></mrow><mi>Q</mi></mrow></semantics></math></inline-formula> showed decreasing behavior. Furthermore, the present work is validated by comparison with HAM and previously published work, with good results.Zeeshan KhanWaris KhanIlyas KhanNawa AlshammariNawaf N. HamadnehMDPI AGarticleRK4 and HAM solutionsEyring–Powell fluidnon-Newtonian fluidtransverse MHD effectpermeable matrixtemperature-dependent viscosityOrganic chemistryQD241-441ENPolymers, Vol 13, Iss 3696, p 3696 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
RK4 and HAM solutions Eyring–Powell fluid non-Newtonian fluid transverse MHD effect permeable matrix temperature-dependent viscosity Organic chemistry QD241-441 |
spellingShingle |
RK4 and HAM solutions Eyring–Powell fluid non-Newtonian fluid transverse MHD effect permeable matrix temperature-dependent viscosity Organic chemistry QD241-441 Zeeshan Khan Waris Khan Ilyas Khan Nawa Alshammari Nawaf N. Hamadneh RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates |
description |
In this work, we studied the impacts of transmitting light, nonlinear thermal, and micropolar fluid mechanics on a wire surface coating utilizing non-Newtonian viscoelastic flow. Models with temperature-dependent variable viscosity were used. The boundary layer equations governing the flow and heat transport processes were solved using the Runge–Kutta fourth order method. A distinguished constituent of this study was the use of a porous matrix that acted as an insulator to reduce heat loss. In this paper we discuss the effects of numerous development parameters, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>,</mo><mo> </mo><mi>m</mi><mo>,</mo><mo> </mo><mi>Ω</mi><mo>,</mo><mo> </mo><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>r</mi></mrow></semantics></math></inline-formula> (non-Newtonian parameter, heat-producing parameter, viscosity parameter, variable viscosity parameter, porosity parameter, and Brinkman number, respectively). Furthermore, the effects of two other parameters, <i>D</i> and <i>M</i>, are also discussed as they relate to velocity and temperature distributions. We observed that the velocity profiles decreased with increasing values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>. Fluid velocity increased as the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>,</mo><mo> </mo><mi>B</mi><mi>r</mi><mo>,</mo><mo> </mo><mi>N</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> increased, while it decreased when the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>p</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Q</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>D</mi></semantics></math></inline-formula> increased. For increasing values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>M</mi></semantics></math></inline-formula>, the temperature profile showed increasing behavior, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>r</mi><mrow><mo> </mo><mi>and</mi><mo> </mo></mrow><mi>Q</mi></mrow></semantics></math></inline-formula> showed decreasing behavior. Furthermore, the present work is validated by comparison with HAM and previously published work, with good results. |
format |
article |
author |
Zeeshan Khan Waris Khan Ilyas Khan Nawa Alshammari Nawaf N. Hamadneh |
author_facet |
Zeeshan Khan Waris Khan Ilyas Khan Nawa Alshammari Nawaf N. Hamadneh |
author_sort |
Zeeshan Khan |
title |
RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates |
title_short |
RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates |
title_full |
RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates |
title_fullStr |
RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates |
title_full_unstemmed |
RK4 and HAM Solutions of Eyring–Powell Fluid Coating Material with Temperature-Dependent-Viscosity Impact of Porous Matrix on Wire Coating Filled in Coating Die: Cylindrical Co-ordinates |
title_sort |
rk4 and ham solutions of eyring–powell fluid coating material with temperature-dependent-viscosity impact of porous matrix on wire coating filled in coating die: cylindrical co-ordinates |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/6767d301e0c54ef8b34a96922785fa92 |
work_keys_str_mv |
AT zeeshankhan rk4andhamsolutionsofeyringpowellfluidcoatingmaterialwithtemperaturedependentviscosityimpactofporousmatrixonwirecoatingfilledincoatingdiecylindricalcoordinates AT wariskhan rk4andhamsolutionsofeyringpowellfluidcoatingmaterialwithtemperaturedependentviscosityimpactofporousmatrixonwirecoatingfilledincoatingdiecylindricalcoordinates AT ilyaskhan rk4andhamsolutionsofeyringpowellfluidcoatingmaterialwithtemperaturedependentviscosityimpactofporousmatrixonwirecoatingfilledincoatingdiecylindricalcoordinates AT nawaalshammari rk4andhamsolutionsofeyringpowellfluidcoatingmaterialwithtemperaturedependentviscosityimpactofporousmatrixonwirecoatingfilledincoatingdiecylindricalcoordinates AT nawafnhamadneh rk4andhamsolutionsofeyringpowellfluidcoatingmaterialwithtemperaturedependentviscosityimpactofporousmatrixonwirecoatingfilledincoatingdiecylindricalcoordinates |
_version_ |
1718431766194159616 |