Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts
Symbolic regression holds big promise for guiding materials design, yet its application in materials science is still limited. Here the authors use symbolic regression to introduce an activity descriptor predicting new oxide perovskites with improved oxygen evolution activity as corroborated by expe...
Guardado en:
Autores principales: | Baicheng Weng, Zhilong Song, Rilong Zhu, Qingyu Yan, Qingde Sun, Corey G. Grice, Yanfa Yan, Wan-Jian Yin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/676d3825e20a4a98abc38543327d92c6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning
por: Pikee Priya, et al.
Publicado: (2021) -
Application of symbolic regression for constitutive modeling of plastic deformation
por: Evgeniya Kabliman, et al.
Publicado: (2021) -
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
por: Shuaihua Lu, et al.
Publicado: (2018) -
Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites
por: Manoj K. Jana, et al.
Publicado: (2021) -
Electronic parameters in cobalt-based perovskite-type oxides as descriptors for chemocatalytic reactions
por: Johannes Simböck, et al.
Publicado: (2020)