Emergent vulnerability to climate-driven disturbances in European forests
Natural disturbances imperil healthy and productive forests, but quantifying their effects at large scales is challenging. Here the authors apply machine learning to disturbance records and satellite data to quantify and map European forest vulnerability to fires, windthrows, and insect outbreaks th...
Guardado en:
Autores principales: | Giovanni Forzieri, Marco Girardello, Guido Ceccherini, Jonathan Spinoni, Luc Feyen, Henrik Hartmann, Pieter S. A. Beck, Gustau Camps-Valls, Gherado Chirici, Achille Mauri, Alessandro Cescatti |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/676ec7dbcdf4401994b9084cff8ab823 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting regional coastal sea level changes with machine learning
por: Veronica Nieves, et al.
Publicado: (2021) -
Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven cancer
por: Nan Jin, et al.
Publicado: (2019) -
Export-Driven, Extensive Coastal Aquaculture Can Benefit Nutritionally Vulnerable People
por: Abdullah-Al Mamun, et al.
Publicado: (2021) -
MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer
por: C. Kalogirou, et al.
Publicado: (2021) -
Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water
por: E. Darelius, et al.
Publicado: (2016)