Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy

Abstract Many cardiovascular diseases lead to local increases in relative pressure, reflecting the higher costs of driving blood flow. The utility of this biomarker for stratifying the severity of disease has thus driven the development of methods to measure these relative pressures. While intravasc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: David Marlevi, Bram Ruijsink, Maximilian Balmus, Desmond Dillon-Murphy, Daniel Fovargue, Kuberan Pushparajah, Cristóbal Bertoglio, Massimiliano Colarieti-Tosti, Matilda Larsson, Pablo Lamata, C. Alberto Figueroa, Reza Razavi, David A. Nordsletten
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/676f52cf1ebe445f9e91454e25b4ed5d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:676f52cf1ebe445f9e91454e25b4ed5d
record_format dspace
spelling oai:doaj.org-article:676f52cf1ebe445f9e91454e25b4ed5d2021-12-02T16:08:43ZEstimation of Cardiovascular Relative Pressure Using Virtual Work-Energy10.1038/s41598-018-37714-02045-2322https://doaj.org/article/676f52cf1ebe445f9e91454e25b4ed5d2019-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-37714-0https://doaj.org/toc/2045-2322Abstract Many cardiovascular diseases lead to local increases in relative pressure, reflecting the higher costs of driving blood flow. The utility of this biomarker for stratifying the severity of disease has thus driven the development of methods to measure these relative pressures. While intravascular catheterisation remains the most direct measure, its invasiveness limits clinical application in many instances. Non-invasive Doppler ultrasound estimates have partially addressed this gap; however only provide relative pressure estimates for a range of constricted cardiovascular conditions. Here we introduce a non-invasive method that enables arbitrary interrogation of relative pressures throughout an imaged vascular structure, leveraging modern phase contrast magnetic resonance imaging, the virtual work-energy equations, and a virtual field to provide robust and accurate estimates. The versatility and accuracy of the method is verified in a set of complex patient-specific cardiovascular models, where relative pressures into previously inaccessible flow regions are assessed. The method is further validated within a cohort of congenital heart disease patients, providing a novel tool for probing relative pressures in-vivo.David MarleviBram RuijsinkMaximilian BalmusDesmond Dillon-MurphyDaniel FovargueKuberan PushparajahCristóbal BertoglioMassimiliano Colarieti-TostiMatilda LarssonPablo LamataC. Alberto FigueroaReza RazaviDavid A. NordslettenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-16 (2019)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
David Marlevi
Bram Ruijsink
Maximilian Balmus
Desmond Dillon-Murphy
Daniel Fovargue
Kuberan Pushparajah
Cristóbal Bertoglio
Massimiliano Colarieti-Tosti
Matilda Larsson
Pablo Lamata
C. Alberto Figueroa
Reza Razavi
David A. Nordsletten
Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy
description Abstract Many cardiovascular diseases lead to local increases in relative pressure, reflecting the higher costs of driving blood flow. The utility of this biomarker for stratifying the severity of disease has thus driven the development of methods to measure these relative pressures. While intravascular catheterisation remains the most direct measure, its invasiveness limits clinical application in many instances. Non-invasive Doppler ultrasound estimates have partially addressed this gap; however only provide relative pressure estimates for a range of constricted cardiovascular conditions. Here we introduce a non-invasive method that enables arbitrary interrogation of relative pressures throughout an imaged vascular structure, leveraging modern phase contrast magnetic resonance imaging, the virtual work-energy equations, and a virtual field to provide robust and accurate estimates. The versatility and accuracy of the method is verified in a set of complex patient-specific cardiovascular models, where relative pressures into previously inaccessible flow regions are assessed. The method is further validated within a cohort of congenital heart disease patients, providing a novel tool for probing relative pressures in-vivo.
format article
author David Marlevi
Bram Ruijsink
Maximilian Balmus
Desmond Dillon-Murphy
Daniel Fovargue
Kuberan Pushparajah
Cristóbal Bertoglio
Massimiliano Colarieti-Tosti
Matilda Larsson
Pablo Lamata
C. Alberto Figueroa
Reza Razavi
David A. Nordsletten
author_facet David Marlevi
Bram Ruijsink
Maximilian Balmus
Desmond Dillon-Murphy
Daniel Fovargue
Kuberan Pushparajah
Cristóbal Bertoglio
Massimiliano Colarieti-Tosti
Matilda Larsson
Pablo Lamata
C. Alberto Figueroa
Reza Razavi
David A. Nordsletten
author_sort David Marlevi
title Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy
title_short Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy
title_full Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy
title_fullStr Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy
title_full_unstemmed Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy
title_sort estimation of cardiovascular relative pressure using virtual work-energy
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/676f52cf1ebe445f9e91454e25b4ed5d
work_keys_str_mv AT davidmarlevi estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT bramruijsink estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT maximilianbalmus estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT desmonddillonmurphy estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT danielfovargue estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT kuberanpushparajah estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT cristobalbertoglio estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT massimilianocolarietitosti estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT matildalarsson estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT pablolamata estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT calbertofigueroa estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT rezarazavi estimationofcardiovascularrelativepressureusingvirtualworkenergy
AT davidanordsletten estimationofcardiovascularrelativepressureusingvirtualworkenergy
_version_ 1718384474165608448