Autonomous reinforcement learning agent for stretchable kirigami design of 2D materials
Abstract Mechanical behavior of 2D materials such as MoS2 can be tuned by the ancient art of kirigami. Experiments and atomistic simulations show that 2D materials can be stretched more than 50% by strategic insertion of cuts. However, designing kirigami structures with desired mechanical properties...
Guardado en:
Autores principales: | Pankaj Rajak, Beibei Wang, Ken-ichi Nomura, Ye Luo, Aiichiro Nakano, Rajiv Kalia, Priya Vashishta |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/677801e86c9c4479ada8ce35b66038ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Autonomous reinforcement learning agent for chemical vapor deposition synthesis of quantum materials
por: Pankaj Rajak, et al.
Publicado: (2021) -
Multipolicy Robot-Following Model Based on Reinforcement Learning
por: Ning Yu, et al.
Publicado: (2021) -
Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning
por: Pikee Priya, et al.
Publicado: (2021) -
Computed Tomography Imaging Based on Edge Detection Algorithm in Diagnosis and Rehabilitation Nursing of Stroke Patients with Motor Dysfunction
por: Ting Lu, et al.
Publicado: (2021) -
A study of real-world micrograph data quality and machine learning model robustness
por: Xiaoting Zhong, et al.
Publicado: (2021)