Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning

The early detection and accurate histopathological diagnosis of gastric cancer are essential factors that can help increase the chances of successful treatment. Here, the authors report on a digital pathology tool achieving high performance on a real world test dataset and show that the system can a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhigang Song, Shuangmei Zou, Weixun Zhou, Yong Huang, Liwei Shao, Jing Yuan, Xiangnan Gou, Wei Jin, Zhanbo Wang, Xin Chen, Xiaohui Ding, Jinhong Liu, Chunkai Yu, Calvin Ku, Cancheng Liu, Zhuo Sun, Gang Xu, Yuefeng Wang, Xiaoqing Zhang, Dandan Wang, Shuhao Wang, Wei Xu, Richard C. Davis, Huaiyin Shi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/67894aca423044e8966085a1a7cd5193
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The early detection and accurate histopathological diagnosis of gastric cancer are essential factors that can help increase the chances of successful treatment. Here, the authors report on a digital pathology tool achieving high performance on a real world test dataset and show that the system can aid pathologists in improving diagnostic accuracy.