CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network
Abstract Background The existing studies show that circRNAs can be used as a biomarker of diseases and play a prominent role in the treatment and diagnosis of diseases. However, the relationships between the vast majority of circRNAs and diseases are still unclear, and more experiments are needed to...
Guardado en:
Autores principales: | Zhihao Ma, Zhufang Kuang, Lei Deng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/678b5d4784a644f3ba2c6544c11456f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MSGCN: Multi-Subgraph Based Heterogeneous Graph Convolution Network Embedding
por: Junhui Chen, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
The roles of miRNA, lncRNA and circRNA in the development of osteoporosis
por: Yang,Yang, et al.
Publicado: (2020) -
Deep Graph Convolutional Networks for Accurate Automatic Road Network Selection
por: Jing Zheng, et al.
Publicado: (2021) -
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
por: Shanchen Pang, et al.
Publicado: (2021)