Hyperparameter optimisation and validation of registration algorithms for measuring regional ventricular deformation using retrospective gated computed tomography images
Abstract Recent dose reduction techniques have made retrospective computed tomography (CT) scans more applicable and extracting myocardial function from cardiac computed tomography (CCT) images feasible. However, hyperparameters of generic image intensity-based registration techniques, which are use...
Guardado en:
Autores principales: | Orod Razeghi, Mattias Heinrich, Thomas E. Fastl, Cesare Corrado, Rashed Karim, Adelaide De Vecchi, Tom Banks, Patrick Donnelly, Jonathan M. Behar, Justin Gould, Ronak Rajani, Christopher A. Rinaldi, Steven Niederer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/679cf02eda8147b9be675fd9ac1dfbf8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning
por: Shaashwat Agrawal, et al.
Publicado: (2021) -
Adaptive hyperparameter updating for training restricted Boltzmann machines on quantum annealers
por: Guanglei Xu, et al.
Publicado: (2021) -
Self-Tuning Lam Annealing: Learning Hyperparameters While Problem Solving
por: Vincent A. Cicirello
Publicado: (2021) -
Optimal hyperparameter tuning of random forests for estimating causal treatment effects
por: Lateef Amusa, et al.
Publicado: (2021) -
Development of a hyperparameter optimization method for recommendatory models based on matrix factorization
por: Alexander Nechaev, et al.
Publicado: (2021)