Hyperparameter optimisation and validation of registration algorithms for measuring regional ventricular deformation using retrospective gated computed tomography images
Abstract Recent dose reduction techniques have made retrospective computed tomography (CT) scans more applicable and extracting myocardial function from cardiac computed tomography (CCT) images feasible. However, hyperparameters of generic image intensity-based registration techniques, which are use...
Enregistré dans:
Auteurs principaux: | Orod Razeghi, Mattias Heinrich, Thomas E. Fastl, Cesare Corrado, Rashed Karim, Adelaide De Vecchi, Tom Banks, Patrick Donnelly, Jonathan M. Behar, Justin Gould, Ronak Rajani, Christopher A. Rinaldi, Steven Niederer |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/679cf02eda8147b9be675fd9ac1dfbf8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning
par: Shaashwat Agrawal, et autres
Publié: (2021) -
Adaptive hyperparameter updating for training restricted Boltzmann machines on quantum annealers
par: Guanglei Xu, et autres
Publié: (2021) -
Self-Tuning Lam Annealing: Learning Hyperparameters While Problem Solving
par: Vincent A. Cicirello
Publié: (2021) -
Optimal hyperparameter tuning of random forests for estimating causal treatment effects
par: Lateef Amusa, et autres
Publié: (2021) -
Development of a hyperparameter optimization method for recommendatory models based on matrix factorization
par: Alexander Nechaev, et autres
Publié: (2021)