DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data
Cell-type-specific genes are often strongly correlated in expression - an informative yet underexplored property of single-cell data. Here, the authors leverage gene expression correlations to develop DUBStepR, a feature selection method for accurately clustering single-cell data.
Guardado en:
Autores principales: | Bobby Ranjan, Wenjie Sun, Jinyu Park, Kunal Mishra, Florian Schmidt, Ronald Xie, Fatemeh Alipour, Vipul Singhal, Ignasius Joanito, Mohammad Amin Honardoost, Jacy Mei Yun Yong, Ee Tzun Koh, Khai Pang Leong, Nirmala Arul Rayan, Michelle Gek Liang Lim, Shyam Prabhakar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/679d215e24a04b659dd516970921da96 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Concise and scalable synthesis of (±)-phosphonothrixin
por: Yoshitaka Matsushima, et al.
Publicado: (2021) -
Scalability of Mobile Cloud Storage
por: Nur Syahela Hussien, et al.
Publicado: (2021) -
Accurate, scalable and integrative haplotype estimation
por: Olivier Delaneau, et al.
Publicado: (2019) -
Scalable user selection in FDD massive MIMO
por: Xing Zhang, et al.
Publicado: (2021) -
Dynamic and scalable DNA-based information storage
por: Kevin N. Lin, et al.
Publicado: (2020)