DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data
Cell-type-specific genes are often strongly correlated in expression - an informative yet underexplored property of single-cell data. Here, the authors leverage gene expression correlations to develop DUBStepR, a feature selection method for accurately clustering single-cell data.
Enregistré dans:
Auteurs principaux: | Bobby Ranjan, Wenjie Sun, Jinyu Park, Kunal Mishra, Florian Schmidt, Ronald Xie, Fatemeh Alipour, Vipul Singhal, Ignasius Joanito, Mohammad Amin Honardoost, Jacy Mei Yun Yong, Ee Tzun Koh, Khai Pang Leong, Nirmala Arul Rayan, Michelle Gek Liang Lim, Shyam Prabhakar |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/679d215e24a04b659dd516970921da96 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Concise and scalable synthesis of (±)-phosphonothrixin
par: Yoshitaka Matsushima, et autres
Publié: (2021) -
Scalability of Mobile Cloud Storage
par: Nur Syahela Hussien, et autres
Publié: (2021) -
Accurate, scalable and integrative haplotype estimation
par: Olivier Delaneau, et autres
Publié: (2019) -
Scalable user selection in FDD massive MIMO
par: Xing Zhang, et autres
Publié: (2021) -
Dynamic and scalable DNA-based information storage
par: Kevin N. Lin, et autres
Publié: (2020)