A Modular U-Net for Automated Segmentation of X-Ray Tomography Images in Composite Materials
X-Ray Computed Tomography (XCT) techniques have evolved to a point that high-resolution data can be acquired so fast that classic segmentation methods are prohibitively cumbersome, demanding automated data pipelines capable of dealing with non-trivial 3D images. Meanwhile, deep learning has demonstr...
Guardado en:
Autores principales: | João P. C. Bertoldo, Etienne Decencière , David Ryckelynck , Henry Proudhon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/679dbf87b1ff4732838daf11f3be2271 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Segmentation of Supraspinatus Muscle via Bone-Based Localization in Torso Computed Tomography Images Using U-Net
por: Yuichi Wakamatsu, et al.
Publicado: (2021) -
Impact of Lung Segmentation on the Diagnosis and Explanation of COVID-19 in Chest X-ray Images
por: Lucas O. Teixeira, et al.
Publicado: (2021) -
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
por: Giorgio Ciano, et al.
Publicado: (2021) -
ChoroidNET: A Dense Dilated U-Net Model for Choroid Layer and Vessel Segmentation in Optical Coherence Tomography Images
por: Tin Tin Khaing, et al.
Publicado: (2021) -
A study of generalization and compatibility performance of 3D U-Net segmentation on multiple heterogeneous liver CT datasets
por: Baochun He, et al.
Publicado: (2021)