Resolution enhancement in scanning electron microscopy using deep learning
Abstract We report resolution enhancement in scanning electron microscopy (SEM) images using a generative adversarial network. We demonstrate the veracity of this deep learning-based super-resolution technique by inferring unresolved features in low-resolution SEM images and comparing them with the...
Guardado en:
Autores principales: | Kevin de Haan, Zachary S. Ballard, Yair Rivenson, Yichen Wu, Aydogan Ozcan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67a6f65d728340228b53d78e8e54f33f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Biopsy-free in vivo virtual histology of skin using deep learning
por: Jingxi Li, et al.
Publicado: (2021) -
Automated screening of sickle cells using a smartphone-based microscope and deep learning
por: Kevin de Haan, et al.
Publicado: (2020) -
High temporal-resolution scanning transmission electron microscopy using sparse-serpentine scan pathways
por: Eduardo Ortega, et al.
Publicado: (2021) -
Deep learning-based transformation of H&E stained tissues into special stains
por: Kevin de Haan, et al.
Publicado: (2021) -
Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors
por: Zachary S. Ballard, et al.
Publicado: (2020)