Deep learning networks reflect cytoarchitectonic features used in brain mapping
Abstract The distribution of neurons in the cortex (cytoarchitecture) differs between cortical areas and constitutes the basis for structural maps of the human brain. Deep learning approaches provide a promising alternative to overcome throughput limitations of currently used cytoarchitectonic mappi...
Guardado en:
Autores principales: | Kai Kiwitz, Christian Schiffer, Hannah Spitzer, Timo Dickscheid, Katrin Amunts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67bde2c876a64ebc9c7c1c47d04d06a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level
por: Hui Gong, et al.
Publicado: (2016) -
Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus.
por: Sonja A Kotz, et al.
Publicado: (2013) -
Comparative mapping of crawling-cell morphodynamics in deep learning-based feature space.
por: Daisuke Imoto, et al.
Publicado: (2021) -
Electrophysiological dynamics of antagonistic brain networks reflect attentional fluctuations
por: Aaron Kucyi, et al.
Publicado: (2020) -
The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging
por: Casey Paquola, et al.
Publicado: (2021)