Deep learning networks reflect cytoarchitectonic features used in brain mapping
Abstract The distribution of neurons in the cortex (cytoarchitecture) differs between cortical areas and constitutes the basis for structural maps of the human brain. Deep learning approaches provide a promising alternative to overcome throughput limitations of currently used cytoarchitectonic mappi...
Enregistré dans:
Auteurs principaux: | Kai Kiwitz, Christian Schiffer, Hannah Spitzer, Timo Dickscheid, Katrin Amunts |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/67bde2c876a64ebc9c7c1c47d04d06a8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level
par: Hui Gong, et autres
Publié: (2016) -
Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus.
par: Sonja A Kotz, et autres
Publié: (2013) -
Comparative mapping of crawling-cell morphodynamics in deep learning-based feature space.
par: Daisuke Imoto, et autres
Publié: (2021) -
Electrophysiological dynamics of antagonistic brain networks reflect attentional fluctuations
par: Aaron Kucyi, et autres
Publié: (2020) -
The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging
par: Casey Paquola, et autres
Publié: (2021)