miR-362-3p suppresses ovarian cancer by inhibiting LRP8

Background: Ovarian cancer is one of the most common female cancers, with a high incidence worldwide. Aberrant expression of low‐density lipoprotein (LDL) receptor‐related protein 8 (LRP8) and microRNA (miR)-362-3p is involved in the pathogenesis of different cancers. Methods: We aimed to elucidate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chun Li, Yi Yang, Huimin Wang, Yu Song, Huan Huang
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
L
Acceso en línea:https://doaj.org/article/67c2494b59f3474daa2912d4ad9714d4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Background: Ovarian cancer is one of the most common female cancers, with a high incidence worldwide. Aberrant expression of low‐density lipoprotein (LDL) receptor‐related protein 8 (LRP8) and microRNA (miR)-362-3p is involved in the pathogenesis of different cancers. Methods: We aimed to elucidate the underlying mechanism of the miR-362-3p-LRP8 axis in ovarian cancer. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to examine miR-362-3p and LRP8 expression in ovarian cancer tissues and cells. The luciferase assay was used to determine the relationship between miR-362-3p and LRP8. The function of overexpression of miR-362-3p and LRP8 was determined by assessing the cell viability using the cell counting kit 8 (CCK-8) assay, proliferation using 5′‑bromo-2′-deoxyuridine (BrdU) assay, migration using wound healing assay, invasion using transwell assay, and the protein expression levels of matrix metalloproteinase (MMP)-2, MMP9, and integrin α5 or β1 using western blotting assays in ovarian cancer cells. Results: miR-362-3p expression levels were decreased in ovarian cancer tissues and cells and negatively correlated with LRP8 levels. Overexpression of miR-362-3p dramatically repressed cell growth. Furthermore, overexpression of LRP8 significantly facilitated the proliferation, migration, and invasion of ovarian cancer cells, which counteracted the inhibitory effect of miR-362-3p on ovarian cancer cell growth. Conclusions: We reported that miR-362-3p hampered cell growth by repressing LRP8 expression in ovarian cancer cells. Our results provide new insights into ovarian cancer, involving both miR-362-3p and LRP8, which can be used as potential biomarkers for the treatment of ovarian cancer.