Sustained splenic contraction after daily cocaine administration in rats.

The purpose of this study is to examine the effect of repeated cocaine administration on the whole body of rats. Rats (male, 6 weeks old, Sprague Dawley) were injected intraperitoneally with cocaine (50 mg/kg) once a day for 1, 3 or 7 days, and major organs (heart, liver, lung, brain, kidney, spleen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Moeka Nomura, Kana Unuma, Toshihiko Aki, Koichi Uemura
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/67c8be7553574ee693abc06093ddc539
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The purpose of this study is to examine the effect of repeated cocaine administration on the whole body of rats. Rats (male, 6 weeks old, Sprague Dawley) were injected intraperitoneally with cocaine (50 mg/kg) once a day for 1, 3 or 7 days, and major organs (heart, liver, lung, brain, kidney, spleen) were excised from the sacrificed animals. During autopsy, we found a reduction in spleen size, but not other organs, in cocaine-administered rats as compared to control rats. This reduction became to be noticed at 3 day and easily perceived at 7 day. No marked changes were observed in other organs examined. H&E and EMG staining showed a tendency for a decrease in the number of red blood cells (RBCs) as well as an increase in collagen fibers in the spleens of rats treated repeatedly with cocaine. Transcriptome analysis indicated that repeated cocaine administration depletes RBCs from the spleen. Immunoblot analysis showed that cocaine increases the phosphorylation of myosin light chain (MYL) as well as the levels of transgelin, both of which are involved in the contraction of myofibrils. Collectively, these results show that repeated cocaine administration results in sustained contraction of the spleen, which leads to the release of RBCs from the spleen into circulation.