A novel orally active HDAC6 inhibitor T-518 shows a therapeutic potential for Alzheimer’s disease and tauopathy in mice

Abstract Accumulation of tau protein is a key pathology of age-related neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Those diseases are collectively termed tauopathies. Tau pathology is associated with axonal degeneration because tau binds to microtu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tomohiro Onishi, Ryouta Maeda, Michiko Terada, Sho Sato, Takahiro Fujii, Masahiro Ito, Kentaro Hashikami, Tomohiro Kawamoto, Maiko Tanaka
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/67cf6d93ad1a49af82682f07692cec8c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Accumulation of tau protein is a key pathology of age-related neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Those diseases are collectively termed tauopathies. Tau pathology is associated with axonal degeneration because tau binds to microtubules (MTs), a component of axon and regulates their stability. The acetylation state of MTs contributes to stability and histone deacetylase 6 (HDAC6) is a major regulator of MT acetylation status, suggesting that pharmacological HDAC6 inhibition could improve axonal function and may slow the progression of tauopathy. Here we characterize N-[(1R,2R)-2-{3-[5-(difluoromethyl)-1,3,4-oxadiazol-2-yl]-5-oxo-5H,6H,7H-pyrrolo[3,4-b]pyridin-6-yl}cyclohexyl]-2,2,3,3,3-pentafluoropropanamide (T-518), a novel, potent, highly selective HDAC6 inhibitor with clinically favorable pharmacodynamics. T-518 shows potent inhibitory activity against HDAC6 and superior selectivity over other HDACs compared with the known HDAC6 inhibitors in the enzyme and cellular assays. T-518 showed brain penetration in an oral dose and blocked HDAC6-dependent tubulin deacetylation at Lys40 in mouse hippocampus. A 2-week treatment restored impaired axonal transport and novel object recognition in the P301S tau Tg mouse, tauopathy model, while a 3-month treatment also decreased RIPA-insoluble tau accumulation. Pharmaceutical inhibition of HDAC6 is a potential therapeutic strategy for tauopathy, and T-518 is a particularly promising drug candidate.