Existence of local and global solution for a spatio-temporal predator-prey model
In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an inv...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN ES |
Publicado: |
Pontificia Universidad Javeriana
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67e2bfb122cb462ea430bb2c516f2b06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:67e2bfb122cb462ea430bb2c516f2b06 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:67e2bfb122cb462ea430bb2c516f2b062021-11-16T16:41:23ZExistence of local and global solution for a spatio-temporal predator-prey model10.11144/Javeriana.SC24-3.eola0122-74832027-1352https://doaj.org/article/67e2bfb122cb462ea430bb2c516f2b062019-12-01T00:00:00Zhttps://revistas.javeriana.edu.co/index.php/scientarium/article/view/23988https://doaj.org/toc/0122-7483https://doaj.org/toc/2027-1352In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an invariant region to show the global existence in time of solutions for the system. By means of Sobolev embeddings and regularity results, we find estimates for predator and prey populations in adequate norms. In order to demonstrate the convergence properties of the introduced method, several numerical examples are given.Ricardo Cano Macias, Jorge Mauricio Ruiz VPontificia Universidad Javerianaarticleglobal weak solution; iterative method; predator-prey system.Science (General)Q1-390ENESUniversitas Scientiarum, Vol 24, Iss 3, Pp 565-587 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN ES |
topic |
global weak solution; iterative method; predator-prey system. Science (General) Q1-390 |
spellingShingle |
global weak solution; iterative method; predator-prey system. Science (General) Q1-390 Ricardo Cano Macias, Jorge Mauricio Ruiz V Existence of local and global solution for a spatio-temporal predator-prey model |
description |
In this paper we prove the existence and uniqueness of weak solutions for a kind
of Lotka–Volterra system, by using successive linearization techniques. This
approach has the advantage to treat two equations separately in each iteration
step. Under suitable initial conditions, we construct an invariant region to
show the global existence in time of solutions for the system. By means of
Sobolev embeddings and regularity results, we find estimates for predator and
prey populations in adequate norms. In order to demonstrate the convergence
properties of the introduced method, several numerical examples are given. |
format |
article |
author |
Ricardo Cano Macias, Jorge Mauricio Ruiz V |
author_facet |
Ricardo Cano Macias, Jorge Mauricio Ruiz V |
author_sort |
Ricardo Cano Macias, Jorge Mauricio Ruiz V |
title |
Existence of local and global solution for a spatio-temporal predator-prey model |
title_short |
Existence of local and global solution for a spatio-temporal predator-prey model |
title_full |
Existence of local and global solution for a spatio-temporal predator-prey model |
title_fullStr |
Existence of local and global solution for a spatio-temporal predator-prey model |
title_full_unstemmed |
Existence of local and global solution for a spatio-temporal predator-prey model |
title_sort |
existence of local and global solution for a spatio-temporal predator-prey model |
publisher |
Pontificia Universidad Javeriana |
publishDate |
2019 |
url |
https://doaj.org/article/67e2bfb122cb462ea430bb2c516f2b06 |
work_keys_str_mv |
AT ricardocanomaciasjorgemauricioruizv existenceoflocalandglobalsolutionforaspatiotemporalpredatorpreymodel |
_version_ |
1718426305488224256 |