Existence of local and global solution for a spatio-temporal predator-prey model

In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an inv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ricardo Cano Macias, Jorge Mauricio Ruiz V
Formato: article
Lenguaje:EN
ES
Publicado: Pontificia Universidad Javeriana 2019
Materias:
Acceso en línea:https://doaj.org/article/67e2bfb122cb462ea430bb2c516f2b06
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:67e2bfb122cb462ea430bb2c516f2b06
record_format dspace
spelling oai:doaj.org-article:67e2bfb122cb462ea430bb2c516f2b062021-11-16T16:41:23ZExistence of local and global solution for a spatio-temporal predator-prey model10.11144/Javeriana.SC24-3.eola0122-74832027-1352https://doaj.org/article/67e2bfb122cb462ea430bb2c516f2b062019-12-01T00:00:00Zhttps://revistas.javeriana.edu.co/index.php/scientarium/article/view/23988https://doaj.org/toc/0122-7483https://doaj.org/toc/2027-1352In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an invariant region to show the global existence in time of solutions for the system. By means of Sobolev embeddings and regularity results, we find estimates for predator and prey populations in adequate norms. In order to demonstrate the convergence properties of the introduced method, several numerical examples are given.Ricardo Cano Macias, Jorge Mauricio Ruiz VPontificia Universidad Javerianaarticleglobal weak solution; iterative method; predator-prey system.Science (General)Q1-390ENESUniversitas Scientiarum, Vol 24, Iss 3, Pp 565-587 (2019)
institution DOAJ
collection DOAJ
language EN
ES
topic global weak solution; iterative method; predator-prey system.
Science (General)
Q1-390
spellingShingle global weak solution; iterative method; predator-prey system.
Science (General)
Q1-390
Ricardo Cano Macias, Jorge Mauricio Ruiz V
Existence of local and global solution for a spatio-temporal predator-prey model
description In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an invariant region to show the global existence in time of solutions for the system. By means of Sobolev embeddings and regularity results, we find estimates for predator and prey populations in adequate norms. In order to demonstrate the convergence properties of the introduced method, several numerical examples are given.
format article
author Ricardo Cano Macias, Jorge Mauricio Ruiz V
author_facet Ricardo Cano Macias, Jorge Mauricio Ruiz V
author_sort Ricardo Cano Macias, Jorge Mauricio Ruiz V
title Existence of local and global solution for a spatio-temporal predator-prey model
title_short Existence of local and global solution for a spatio-temporal predator-prey model
title_full Existence of local and global solution for a spatio-temporal predator-prey model
title_fullStr Existence of local and global solution for a spatio-temporal predator-prey model
title_full_unstemmed Existence of local and global solution for a spatio-temporal predator-prey model
title_sort existence of local and global solution for a spatio-temporal predator-prey model
publisher Pontificia Universidad Javeriana
publishDate 2019
url https://doaj.org/article/67e2bfb122cb462ea430bb2c516f2b06
work_keys_str_mv AT ricardocanomaciasjorgemauricioruizv existenceoflocalandglobalsolutionforaspatiotemporalpredatorpreymodel
_version_ 1718426305488224256