On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility
A generalisation of m-expansive Hilbert space operators T ∈ B(ℋ) [18, 20] to Banach space operators T ∈ B(𝒳) is obtained by defining that a pair of operators A, B ∈ B(𝒳) is (m, P)-expansive for some operator P ∈ B(𝒳) if Δ A,Bm(P)= (I-LARB)m(P)=∑j=0m(-1)j(jm){\left( {I - {L_A}{R_B}} \right)^m}\left(...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67e6529f69654bfe9bc74d2146fcb1d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | A generalisation of m-expansive Hilbert space operators T ∈ B(ℋ) [18, 20] to Banach space operators T ∈ B(𝒳) is obtained by defining that a pair of operators A, B ∈ B(𝒳) is (m, P)-expansive for some operator P ∈ B(𝒳) if Δ A,Bm(P)= (I-LARB)m(P)=∑j=0m(-1)j(jm){\left( {I - {L_A}{R_B}} \right)^m}\left( P \right) = \sum\nolimits_{j = 0}^m {{{\left( { - 1} \right)}^j}\left( {_j^m} \right)}AjPBj≤0; LA(X) = AX and RB(X)=XB. |
---|