On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility

A generalisation of m-expansive Hilbert space operators T ∈ B(ℋ) [18, 20] to Banach space operators T ∈ B(𝒳) is obtained by defining that a pair of operators A, B ∈ B(𝒳) is (m, P)-expansive for some operator P ∈ B(𝒳) if Δ A,Bm(P)= (I-LARB)m(P)=∑j=0m(-1)j(jm){\left( {I - {L_A}{R_B}} \right)^m}\left(...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Duggal B.P.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/67e6529f69654bfe9bc74d2146fcb1d9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:67e6529f69654bfe9bc74d2146fcb1d9
record_format dspace
spelling oai:doaj.org-article:67e6529f69654bfe9bc74d2146fcb1d92021-12-05T14:10:45ZOn (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility2299-328210.1515/conop-2020-0120https://doaj.org/article/67e6529f69654bfe9bc74d2146fcb1d92021-11-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0120https://doaj.org/toc/2299-3282A generalisation of m-expansive Hilbert space operators T ∈ B(ℋ) [18, 20] to Banach space operators T ∈ B(𝒳) is obtained by defining that a pair of operators A, B ∈ B(𝒳) is (m, P)-expansive for some operator P ∈ B(𝒳) if Δ A,Bm(P)= (I-LARB)m(P)=∑j=0m(-1)j(jm){\left( {I - {L_A}{R_B}} \right)^m}\left( P \right) = \sum\nolimits_{j = 0}^m {{{\left( { - 1} \right)}^j}\left( {_j^m} \right)}AjPBj≤0; LA(X) = AX and RB(X)=XB.Duggal B.P.De Gruyterarticlehilbert/banach spaceleft/right multiplication operator(m, p)-expansive operatorsm-left invertible/m-isometric operatorsproduct of operatorsperturbation by nilpotentsdrazin invertible operators47a05, 47a55secondary 47a11, 47b47MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 158-175 (2021)
institution DOAJ
collection DOAJ
language EN
topic hilbert/banach space
left/right multiplication operator
(m, p)-expansive operators
m-left invertible/m-isometric operators
product of operators
perturbation by nilpotents
drazin invertible operators
47a05, 47a55
secondary 47a11, 47b47
Mathematics
QA1-939
spellingShingle hilbert/banach space
left/right multiplication operator
(m, p)-expansive operators
m-left invertible/m-isometric operators
product of operators
perturbation by nilpotents
drazin invertible operators
47a05, 47a55
secondary 47a11, 47b47
Mathematics
QA1-939
Duggal B.P.
On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility
description A generalisation of m-expansive Hilbert space operators T ∈ B(ℋ) [18, 20] to Banach space operators T ∈ B(𝒳) is obtained by defining that a pair of operators A, B ∈ B(𝒳) is (m, P)-expansive for some operator P ∈ B(𝒳) if Δ A,Bm(P)= (I-LARB)m(P)=∑j=0m(-1)j(jm){\left( {I - {L_A}{R_B}} \right)^m}\left( P \right) = \sum\nolimits_{j = 0}^m {{{\left( { - 1} \right)}^j}\left( {_j^m} \right)}AjPBj≤0; LA(X) = AX and RB(X)=XB.
format article
author Duggal B.P.
author_facet Duggal B.P.
author_sort Duggal B.P.
title On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility
title_short On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility
title_full On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility
title_fullStr On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility
title_full_unstemmed On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility
title_sort on (m, p)-expansive operators: products, perturbation by nilpotents, drazin invertibility
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/67e6529f69654bfe9bc74d2146fcb1d9
work_keys_str_mv AT duggalbp onmpexpansiveoperatorsproductsperturbationbynilpotentsdrazininvertibility
_version_ 1718371763306364928