On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility
A generalisation of m-expansive Hilbert space operators T ∈ B(ℋ) [18, 20] to Banach space operators T ∈ B(𝒳) is obtained by defining that a pair of operators A, B ∈ B(𝒳) is (m, P)-expansive for some operator P ∈ B(𝒳) if Δ A,Bm(P)= (I-LARB)m(P)=∑j=0m(-1)j(jm){\left( {I - {L_A}{R_B}} \right)^m}\left(...
Guardado en:
Autor principal: | Duggal B.P. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67e6529f69654bfe9bc74d2146fcb1d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Range-kernel weak orthogonality of some elementary operators
por: Bachir Ahmed, et al.
Publicado: (2021) -
Spectral Theory For Strongly Continuous Cosine
por: Boua Hamid
Publicado: (2021) -
Left and right generalized Drazin invertible operators and local spectral theory
por: Benharrat,Mohammed, et al.
Publicado: (2019) -
Upper triangular operator matrices and limit points of the essential spectrum
por: Karmouni,M., et al.
Publicado: (2019) -
New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
por: Messaoudene Hadia, et al.
Publicado: (2021)