Extended Equal Area Criterion Revisited: A Direct Method for Fast Transient Stability Analysis
For transient stability analysis of a multi-machine power system, the Extended Equal Area Criterion (EEAC) method applies the classic Equal Area Criterion (EAC) concept to an approximate One Machine Infinite Bus (OMIB) equivalent of the system to find the critical clearing angle. The system-critical...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67f0f305b1074762ac460b11694ca92d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | For transient stability analysis of a multi-machine power system, the Extended Equal Area Criterion (EEAC) method applies the classic Equal Area Criterion (EAC) concept to an approximate One Machine Infinite Bus (OMIB) equivalent of the system to find the critical clearing angle. The system-critical clearing time can then be obtained by numerical integration of OMIB equations. The EEAC method was proposed in the 1980s and 1990s as a substitute for time-domain simulation for Transmission System Operators (TSOs) to provide fast, transient stability analysis with the limited computational power available those days. To ensure the secure operation of the power system, TSOs have to identify and prevent potential critical scenarios through offline analyses of a few dangerous ones. These days, due to increased uncertainties in electrical power systems, the number of these critical scenarios is increasing, substantially, calling for fast, transient stability analysis techniques once more. Among them, the EEAC is a unique approach that provides not only valuable information, but also a graphical representation of system dynamics. This paper revisits the EEAC but from a modern, functional point of view. First, the definition of the OMIB model of a multi-machine power system is redrawn in its general form. To achieve fast, transient stability analysis, EEAC relies on approximate models of the true OMIB model. These approximations are clarified, and the EAC concept is redefined with a general definition for instability, and its conditions. Based on the defined conditions and definitions, functions are developed for each EEAC building block, which are later put out together to provide a full-resolution, functional scheme. This functional scheme not only covers the previous literature on the subject, but also allows to introduce several possible new EEAC approaches and provides a detailed description of their implementation procedure. A number of approaches are applied to the French EHV network, and the approximations are examined. |
---|