Machine learning using clinical data at baseline predicts the efficacy of vedolizumab at week 22 in patients with ulcerative colitis
Abstract Predicting the response of patients with ulcerative colitis (UC) to a biologic such as vedolizumab (VDZ) before administration is an unmet need for optimizing individual patient treatment. We hypothesized that the machine-learning approach with daily clinical information can be a new, promi...
Guardado en:
Autores principales: | Jun Miyoshi, Tsubasa Maeda, Katsuyoshi Matsuoka, Daisuke Saito, Sawako Miyoshi, Minoru Matsuura, Susumu Okamoto, Satoshi Tamura, Tadakazu Hisamatsu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67f3558ce61d4ab2abbd337be27645ca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New and emerging treatments for ulcerative colitis: a focus on vedolizumab
por: Gledhill T, et al.
Publicado: (2013) -
Selective biologics for ulcerative colitis and Crohn's disease – clinical utility of vedolizumab
por: Petkau JM, et al.
Publicado: (2016) -
Infliximab in ulcerative colitis
por: Avi Levin, et al.
Publicado: (2008) -
Golimumab in unresponsive ulcerative colitis
por: Lippert E, et al.
Publicado: (2014) -
Is histological remission of ulcerative colitis achievable?
por: Oleg V. Knyazev, et al.
Publicado: (2021)