Anomalous pseudo-parabolic Kirchhoff-type dynamical model
In this paper, we study an anomalous pseudo-parabolic Kirchhoff-type dynamical model aiming to reveal the control problem of the initial data on the dynamical behavior of the solution in dynamic control system. Firstly, the local existence of solution is obtained by employing the Contraction Mapping...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67f3aa31ee28411b966370f542969cd5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:67f3aa31ee28411b966370f542969cd5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:67f3aa31ee28411b966370f542969cd52021-12-05T14:10:40ZAnomalous pseudo-parabolic Kirchhoff-type dynamical model2191-94962191-950X10.1515/anona-2021-0207https://doaj.org/article/67f3aa31ee28411b966370f542969cd52021-10-01T00:00:00Zhttps://doi.org/10.1515/anona-2021-0207https://doaj.org/toc/2191-9496https://doaj.org/toc/2191-950XIn this paper, we study an anomalous pseudo-parabolic Kirchhoff-type dynamical model aiming to reveal the control problem of the initial data on the dynamical behavior of the solution in dynamic control system. Firstly, the local existence of solution is obtained by employing the Contraction Mapping Principle. Then, we get the global existence of solution, long time behavior of global solution and blowup solution for J(u0) ⩽ d, respectively. In particular, the lower and upper bound estimates of the blowup time are given for J(u0)<d. Finally, we discuss the blowup of solution in finite time and also estimate an upper bound of the blowup time for high initial energy.Dai XiaoqiangHan JiangboLin QiangTian XuetengDe Gruyterarticlepseudo-parabolic kirchhoff-type equationglobal existenceasymptotic behaviorblowup35b4035r1135k55AnalysisQA299.6-433ENAdvances in Nonlinear Analysis, Vol 11, Iss 1, Pp 503-534 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
pseudo-parabolic kirchhoff-type equation global existence asymptotic behavior blowup 35b40 35r11 35k55 Analysis QA299.6-433 |
spellingShingle |
pseudo-parabolic kirchhoff-type equation global existence asymptotic behavior blowup 35b40 35r11 35k55 Analysis QA299.6-433 Dai Xiaoqiang Han Jiangbo Lin Qiang Tian Xueteng Anomalous pseudo-parabolic Kirchhoff-type dynamical model |
description |
In this paper, we study an anomalous pseudo-parabolic Kirchhoff-type dynamical model aiming to reveal the control problem of the initial data on the dynamical behavior of the solution in dynamic control system. Firstly, the local existence of solution is obtained by employing the Contraction Mapping Principle. Then, we get the global existence of solution, long time behavior of global solution and blowup solution for J(u0) ⩽ d, respectively. In particular, the lower and upper bound estimates of the blowup time are given for J(u0)<d. Finally, we discuss the blowup of solution in finite time and also estimate an upper bound of the blowup time for high initial energy. |
format |
article |
author |
Dai Xiaoqiang Han Jiangbo Lin Qiang Tian Xueteng |
author_facet |
Dai Xiaoqiang Han Jiangbo Lin Qiang Tian Xueteng |
author_sort |
Dai Xiaoqiang |
title |
Anomalous pseudo-parabolic Kirchhoff-type dynamical model |
title_short |
Anomalous pseudo-parabolic Kirchhoff-type dynamical model |
title_full |
Anomalous pseudo-parabolic Kirchhoff-type dynamical model |
title_fullStr |
Anomalous pseudo-parabolic Kirchhoff-type dynamical model |
title_full_unstemmed |
Anomalous pseudo-parabolic Kirchhoff-type dynamical model |
title_sort |
anomalous pseudo-parabolic kirchhoff-type dynamical model |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/67f3aa31ee28411b966370f542969cd5 |
work_keys_str_mv |
AT daixiaoqiang anomalouspseudoparabolickirchhofftypedynamicalmodel AT hanjiangbo anomalouspseudoparabolickirchhofftypedynamicalmodel AT linqiang anomalouspseudoparabolickirchhofftypedynamicalmodel AT tianxueteng anomalouspseudoparabolickirchhofftypedynamicalmodel |
_version_ |
1718371843131310080 |