Anomalous pseudo-parabolic Kirchhoff-type dynamical model

In this paper, we study an anomalous pseudo-parabolic Kirchhoff-type dynamical model aiming to reveal the control problem of the initial data on the dynamical behavior of the solution in dynamic control system. Firstly, the local existence of solution is obtained by employing the Contraction Mapping...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dai Xiaoqiang, Han Jiangbo, Lin Qiang, Tian Xueteng
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/67f3aa31ee28411b966370f542969cd5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:67f3aa31ee28411b966370f542969cd5
record_format dspace
spelling oai:doaj.org-article:67f3aa31ee28411b966370f542969cd52021-12-05T14:10:40ZAnomalous pseudo-parabolic Kirchhoff-type dynamical model2191-94962191-950X10.1515/anona-2021-0207https://doaj.org/article/67f3aa31ee28411b966370f542969cd52021-10-01T00:00:00Zhttps://doi.org/10.1515/anona-2021-0207https://doaj.org/toc/2191-9496https://doaj.org/toc/2191-950XIn this paper, we study an anomalous pseudo-parabolic Kirchhoff-type dynamical model aiming to reveal the control problem of the initial data on the dynamical behavior of the solution in dynamic control system. Firstly, the local existence of solution is obtained by employing the Contraction Mapping Principle. Then, we get the global existence of solution, long time behavior of global solution and blowup solution for J(u0) ⩽ d, respectively. In particular, the lower and upper bound estimates of the blowup time are given for J(u0)<d. Finally, we discuss the blowup of solution in finite time and also estimate an upper bound of the blowup time for high initial energy.Dai XiaoqiangHan JiangboLin QiangTian XuetengDe Gruyterarticlepseudo-parabolic kirchhoff-type equationglobal existenceasymptotic behaviorblowup35b4035r1135k55AnalysisQA299.6-433ENAdvances in Nonlinear Analysis, Vol 11, Iss 1, Pp 503-534 (2021)
institution DOAJ
collection DOAJ
language EN
topic pseudo-parabolic kirchhoff-type equation
global existence
asymptotic behavior
blowup
35b40
35r11
35k55
Analysis
QA299.6-433
spellingShingle pseudo-parabolic kirchhoff-type equation
global existence
asymptotic behavior
blowup
35b40
35r11
35k55
Analysis
QA299.6-433
Dai Xiaoqiang
Han Jiangbo
Lin Qiang
Tian Xueteng
Anomalous pseudo-parabolic Kirchhoff-type dynamical model
description In this paper, we study an anomalous pseudo-parabolic Kirchhoff-type dynamical model aiming to reveal the control problem of the initial data on the dynamical behavior of the solution in dynamic control system. Firstly, the local existence of solution is obtained by employing the Contraction Mapping Principle. Then, we get the global existence of solution, long time behavior of global solution and blowup solution for J(u0) ⩽ d, respectively. In particular, the lower and upper bound estimates of the blowup time are given for J(u0)<d. Finally, we discuss the blowup of solution in finite time and also estimate an upper bound of the blowup time for high initial energy.
format article
author Dai Xiaoqiang
Han Jiangbo
Lin Qiang
Tian Xueteng
author_facet Dai Xiaoqiang
Han Jiangbo
Lin Qiang
Tian Xueteng
author_sort Dai Xiaoqiang
title Anomalous pseudo-parabolic Kirchhoff-type dynamical model
title_short Anomalous pseudo-parabolic Kirchhoff-type dynamical model
title_full Anomalous pseudo-parabolic Kirchhoff-type dynamical model
title_fullStr Anomalous pseudo-parabolic Kirchhoff-type dynamical model
title_full_unstemmed Anomalous pseudo-parabolic Kirchhoff-type dynamical model
title_sort anomalous pseudo-parabolic kirchhoff-type dynamical model
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/67f3aa31ee28411b966370f542969cd5
work_keys_str_mv AT daixiaoqiang anomalouspseudoparabolickirchhofftypedynamicalmodel
AT hanjiangbo anomalouspseudoparabolickirchhofftypedynamicalmodel
AT linqiang anomalouspseudoparabolickirchhofftypedynamicalmodel
AT tianxueteng anomalouspseudoparabolickirchhofftypedynamicalmodel
_version_ 1718371843131310080