Osteopontin reduces biofilm formation in a multi-species model of dental biofilm.
<h4>Background</h4>Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacte...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67f8ee1ee2704b73bc3994709981d31b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:67f8ee1ee2704b73bc3994709981d31b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:67f8ee1ee2704b73bc3994709981d31b2021-11-18T07:09:29ZOsteopontin reduces biofilm formation in a multi-species model of dental biofilm.1932-620310.1371/journal.pone.0041534https://doaj.org/article/67f8ee1ee2704b73bc3994709981d31b2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22879891/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN), a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms.<h4>Methodology/principal findings</h4>Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically.<h4>Conclusions/significance</h4>OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.Sebastian SchlaferMerete K RaarupPeter L WejseBente NyvadBrigitte M StädlerDuncan S SutherlandHenrik BirkedalRikke L MeyerPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 8, p e41534 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sebastian Schlafer Merete K Raarup Peter L Wejse Bente Nyvad Brigitte M Städler Duncan S Sutherland Henrik Birkedal Rikke L Meyer Osteopontin reduces biofilm formation in a multi-species model of dental biofilm. |
description |
<h4>Background</h4>Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN), a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms.<h4>Methodology/principal findings</h4>Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically.<h4>Conclusions/significance</h4>OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures. |
format |
article |
author |
Sebastian Schlafer Merete K Raarup Peter L Wejse Bente Nyvad Brigitte M Städler Duncan S Sutherland Henrik Birkedal Rikke L Meyer |
author_facet |
Sebastian Schlafer Merete K Raarup Peter L Wejse Bente Nyvad Brigitte M Städler Duncan S Sutherland Henrik Birkedal Rikke L Meyer |
author_sort |
Sebastian Schlafer |
title |
Osteopontin reduces biofilm formation in a multi-species model of dental biofilm. |
title_short |
Osteopontin reduces biofilm formation in a multi-species model of dental biofilm. |
title_full |
Osteopontin reduces biofilm formation in a multi-species model of dental biofilm. |
title_fullStr |
Osteopontin reduces biofilm formation in a multi-species model of dental biofilm. |
title_full_unstemmed |
Osteopontin reduces biofilm formation in a multi-species model of dental biofilm. |
title_sort |
osteopontin reduces biofilm formation in a multi-species model of dental biofilm. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/67f8ee1ee2704b73bc3994709981d31b |
work_keys_str_mv |
AT sebastianschlafer osteopontinreducesbiofilmformationinamultispeciesmodelofdentalbiofilm AT meretekraarup osteopontinreducesbiofilmformationinamultispeciesmodelofdentalbiofilm AT peterlwejse osteopontinreducesbiofilmformationinamultispeciesmodelofdentalbiofilm AT bentenyvad osteopontinreducesbiofilmformationinamultispeciesmodelofdentalbiofilm AT brigittemstadler osteopontinreducesbiofilmformationinamultispeciesmodelofdentalbiofilm AT duncanssutherland osteopontinreducesbiofilmformationinamultispeciesmodelofdentalbiofilm AT henrikbirkedal osteopontinreducesbiofilmformationinamultispeciesmodelofdentalbiofilm AT rikkelmeyer osteopontinreducesbiofilmformationinamultispeciesmodelofdentalbiofilm |
_version_ |
1718423855850061824 |