Orbital reorientation in MnV2O4 observed by V NMR
Abstract The simultaneous occurrence of the structural and magnetic phase transitions observed in MnV2O4 is one clear example of strong interplay among the spin, orbital and lattice degrees of freedom. The structure of MnV2O4 is switched by the magnetic field and the linear magnetostriction is very...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/67faaf974a694dc5a085cb1b49c8ae75 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:67faaf974a694dc5a085cb1b49c8ae75 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:67faaf974a694dc5a085cb1b49c8ae752021-12-02T15:05:34ZOrbital reorientation in MnV2O4 observed by V NMR10.1038/s41598-017-02015-52045-2322https://doaj.org/article/67faaf974a694dc5a085cb1b49c8ae752017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02015-5https://doaj.org/toc/2045-2322Abstract The simultaneous occurrence of the structural and magnetic phase transitions observed in MnV2O4 is one clear example of strong interplay among the spin, orbital and lattice degrees of freedom. The structure of MnV2O4 is switched by the magnetic field and the linear magnetostriction is very high. The orbital order mediates the interaction between the spin and the lattice generating these phenomena. In this work, we present experimental evidence of an orbital order in MnV2O4 and its reorientation under a rotating magnetic field as obtained by nuclear magnetic resonance(NMR). The shift in the resonance frequency of the V NMR spectrum is symmetrical with respect to 45° as an external magnetic field of 7 T rotates from the c-axis to the b-axis, indicating that the initial easy axis flips to the orthogonal direction most parallel to the field direction. The spectrum of V3+ ions splits into four peaks with a maximum shift of 40 MHz. Our analysis revealed that this is the combined effect of the anisotropic hyperfine field due to an ordered orbital and the dipolar hyperfine field. Reorientation of the orbital order in response to an external magnetic field accompanies the macroscopically observed magnetostriction in MnV2O4.Euna JoSejun ParkJooseop LeeSoonchil LeeJeong Hyun ShimTakehito SuzukiTakuro KatsufujiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-7 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Euna Jo Sejun Park Jooseop Lee Soonchil Lee Jeong Hyun Shim Takehito Suzuki Takuro Katsufuji Orbital reorientation in MnV2O4 observed by V NMR |
description |
Abstract The simultaneous occurrence of the structural and magnetic phase transitions observed in MnV2O4 is one clear example of strong interplay among the spin, orbital and lattice degrees of freedom. The structure of MnV2O4 is switched by the magnetic field and the linear magnetostriction is very high. The orbital order mediates the interaction between the spin and the lattice generating these phenomena. In this work, we present experimental evidence of an orbital order in MnV2O4 and its reorientation under a rotating magnetic field as obtained by nuclear magnetic resonance(NMR). The shift in the resonance frequency of the V NMR spectrum is symmetrical with respect to 45° as an external magnetic field of 7 T rotates from the c-axis to the b-axis, indicating that the initial easy axis flips to the orthogonal direction most parallel to the field direction. The spectrum of V3+ ions splits into four peaks with a maximum shift of 40 MHz. Our analysis revealed that this is the combined effect of the anisotropic hyperfine field due to an ordered orbital and the dipolar hyperfine field. Reorientation of the orbital order in response to an external magnetic field accompanies the macroscopically observed magnetostriction in MnV2O4. |
format |
article |
author |
Euna Jo Sejun Park Jooseop Lee Soonchil Lee Jeong Hyun Shim Takehito Suzuki Takuro Katsufuji |
author_facet |
Euna Jo Sejun Park Jooseop Lee Soonchil Lee Jeong Hyun Shim Takehito Suzuki Takuro Katsufuji |
author_sort |
Euna Jo |
title |
Orbital reorientation in MnV2O4 observed by V NMR |
title_short |
Orbital reorientation in MnV2O4 observed by V NMR |
title_full |
Orbital reorientation in MnV2O4 observed by V NMR |
title_fullStr |
Orbital reorientation in MnV2O4 observed by V NMR |
title_full_unstemmed |
Orbital reorientation in MnV2O4 observed by V NMR |
title_sort |
orbital reorientation in mnv2o4 observed by v nmr |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/67faaf974a694dc5a085cb1b49c8ae75 |
work_keys_str_mv |
AT eunajo orbitalreorientationinmnv2o4observedbyvnmr AT sejunpark orbitalreorientationinmnv2o4observedbyvnmr AT jooseoplee orbitalreorientationinmnv2o4observedbyvnmr AT soonchillee orbitalreorientationinmnv2o4observedbyvnmr AT jeonghyunshim orbitalreorientationinmnv2o4observedbyvnmr AT takehitosuzuki orbitalreorientationinmnv2o4observedbyvnmr AT takurokatsufuji orbitalreorientationinmnv2o4observedbyvnmr |
_version_ |
1718388769467400192 |