From Mechanistic Study to Chiral Catalyst Optimization: Theoretical Insight into Binaphthophosphepine-catalyzed Asymmetric Intramolecular [3 + 2] Cycloaddition

Abstract Density functional M11 was used to study the mechanism and enantioselectivity of a binaphthophosphepine-catalyzed intramolecular [3 + 2] cycloaddition reaction. The computational results revealed that this reaction proceeds through nucleophilic addition of the phosphine catalyst to the alle...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Meng Duan, Lei Zhu, Xiaotian Qi, Zhaoyuan Yu, Yingzi Li, Ruopeng Bai, Yu Lan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/67fab8e326a84725b42feca75f76448f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:67fab8e326a84725b42feca75f76448f
record_format dspace
spelling oai:doaj.org-article:67fab8e326a84725b42feca75f76448f2021-12-02T11:53:00ZFrom Mechanistic Study to Chiral Catalyst Optimization: Theoretical Insight into Binaphthophosphepine-catalyzed Asymmetric Intramolecular [3 + 2] Cycloaddition10.1038/s41598-017-07863-92045-2322https://doaj.org/article/67fab8e326a84725b42feca75f76448f2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07863-9https://doaj.org/toc/2045-2322Abstract Density functional M11 was used to study the mechanism and enantioselectivity of a binaphthophosphepine-catalyzed intramolecular [3 + 2] cycloaddition reaction. The computational results revealed that this reaction proceeds through nucleophilic addition of the phosphine catalyst to the allene, which yields a zwitterionic phosphonium intermediate. The subsequent stepwise [3 + 2] annulation process, which starts with the intramolecular nucleophilic addition of the allenoate moiety to the electron-deficient olefin group, determines the enantioselectivity of the reaction. This step is followed by a ring-closing reaction and water-assisted proton-transfer process to afford the final product with concomitant regeneration of the phosphine catalyst. Theoretical predictions of the enantioselectivity for various phosphine catalysts were consistent with experimental observations, and 2D contour maps played an important role in explaining the origin of the enantioselectivity. Moreover, on the basis of our theoretical study, new binaphthophosphepine catalysts were designed and that are expecting to afford higher enantioselectivity in this cycloaddition reaction.Meng DuanLei ZhuXiaotian QiZhaoyuan YuYingzi LiRuopeng BaiYu LanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Meng Duan
Lei Zhu
Xiaotian Qi
Zhaoyuan Yu
Yingzi Li
Ruopeng Bai
Yu Lan
From Mechanistic Study to Chiral Catalyst Optimization: Theoretical Insight into Binaphthophosphepine-catalyzed Asymmetric Intramolecular [3 + 2] Cycloaddition
description Abstract Density functional M11 was used to study the mechanism and enantioselectivity of a binaphthophosphepine-catalyzed intramolecular [3 + 2] cycloaddition reaction. The computational results revealed that this reaction proceeds through nucleophilic addition of the phosphine catalyst to the allene, which yields a zwitterionic phosphonium intermediate. The subsequent stepwise [3 + 2] annulation process, which starts with the intramolecular nucleophilic addition of the allenoate moiety to the electron-deficient olefin group, determines the enantioselectivity of the reaction. This step is followed by a ring-closing reaction and water-assisted proton-transfer process to afford the final product with concomitant regeneration of the phosphine catalyst. Theoretical predictions of the enantioselectivity for various phosphine catalysts were consistent with experimental observations, and 2D contour maps played an important role in explaining the origin of the enantioselectivity. Moreover, on the basis of our theoretical study, new binaphthophosphepine catalysts were designed and that are expecting to afford higher enantioselectivity in this cycloaddition reaction.
format article
author Meng Duan
Lei Zhu
Xiaotian Qi
Zhaoyuan Yu
Yingzi Li
Ruopeng Bai
Yu Lan
author_facet Meng Duan
Lei Zhu
Xiaotian Qi
Zhaoyuan Yu
Yingzi Li
Ruopeng Bai
Yu Lan
author_sort Meng Duan
title From Mechanistic Study to Chiral Catalyst Optimization: Theoretical Insight into Binaphthophosphepine-catalyzed Asymmetric Intramolecular [3 + 2] Cycloaddition
title_short From Mechanistic Study to Chiral Catalyst Optimization: Theoretical Insight into Binaphthophosphepine-catalyzed Asymmetric Intramolecular [3 + 2] Cycloaddition
title_full From Mechanistic Study to Chiral Catalyst Optimization: Theoretical Insight into Binaphthophosphepine-catalyzed Asymmetric Intramolecular [3 + 2] Cycloaddition
title_fullStr From Mechanistic Study to Chiral Catalyst Optimization: Theoretical Insight into Binaphthophosphepine-catalyzed Asymmetric Intramolecular [3 + 2] Cycloaddition
title_full_unstemmed From Mechanistic Study to Chiral Catalyst Optimization: Theoretical Insight into Binaphthophosphepine-catalyzed Asymmetric Intramolecular [3 + 2] Cycloaddition
title_sort from mechanistic study to chiral catalyst optimization: theoretical insight into binaphthophosphepine-catalyzed asymmetric intramolecular [3 + 2] cycloaddition
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/67fab8e326a84725b42feca75f76448f
work_keys_str_mv AT mengduan frommechanisticstudytochiralcatalystoptimizationtheoreticalinsightintobinaphthophosphepinecatalyzedasymmetricintramolecular32cycloaddition
AT leizhu frommechanisticstudytochiralcatalystoptimizationtheoreticalinsightintobinaphthophosphepinecatalyzedasymmetricintramolecular32cycloaddition
AT xiaotianqi frommechanisticstudytochiralcatalystoptimizationtheoreticalinsightintobinaphthophosphepinecatalyzedasymmetricintramolecular32cycloaddition
AT zhaoyuanyu frommechanisticstudytochiralcatalystoptimizationtheoreticalinsightintobinaphthophosphepinecatalyzedasymmetricintramolecular32cycloaddition
AT yingzili frommechanisticstudytochiralcatalystoptimizationtheoreticalinsightintobinaphthophosphepinecatalyzedasymmetricintramolecular32cycloaddition
AT ruopengbai frommechanisticstudytochiralcatalystoptimizationtheoreticalinsightintobinaphthophosphepinecatalyzedasymmetricintramolecular32cycloaddition
AT yulan frommechanisticstudytochiralcatalystoptimizationtheoreticalinsightintobinaphthophosphepinecatalyzedasymmetricintramolecular32cycloaddition
_version_ 1718394928656023552