Dual-Input and Multi-Channel Convolutional Neural Network Model for Vehicle Speed Prediction
With the development of technology, speed prediction has become an important part of intelligent vehicle control strategies. However, the time-varying and nonlinear nature of vehicle speed increases the complexity and difficulty of prediction. Therefore, a CNN-based neural network architecture with...
Guardado en:
Autores principales: | Jiaming Xing, Liang Chu, Chong Guo, Shilin Pu, Zhuoran Hou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/680460ca438a4f3a9312a0eeda9921e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Torque Control Based Speed Synchronization for Two-Speed Gear Electric Vehicle
por: Taeyeon Lee, et al.
Publicado: (2021) -
Research on Selection of Stargazing Window of High-Speed Vehicle
por: Min Changwan, Miao Meng
Publicado: (2021) -
Solar-Powered Active Road Studs and Highway Infrastructure: Effect on Vehicle Speeds
por: Richard Llewellyn, et al.
Publicado: (2021) -
Construction of seated passenger model on high speed railway vehicle by multi-body dynamics
por: Kou HISANO, et al.
Publicado: (2016) -
Influence of Cruise Control Use on Vehicle´s Consumption
por: Loman Michal, et al.
Publicado: (2021)