Exploring quantum Griffiths phase in Ni1−x V x nanoalloys
Abstract Metallic Ni1−x V x alloys exhibit a ferromagnetic to paramagnetic disordered quantum phase transition in bulk. Such a phase transition is accompanied by a quantum Griffiths phase (QGP), featuring fractional power-law temperature dependences of physical variables, like magnetic susceptibilit...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/681c0516a0744dc283d2a4ca687d48c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:681c0516a0744dc283d2a4ca687d48c8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:681c0516a0744dc283d2a4ca687d48c82021-12-02T11:53:07ZExploring quantum Griffiths phase in Ni1−x V x nanoalloys10.1038/s41598-017-01423-x2045-2322https://doaj.org/article/681c0516a0744dc283d2a4ca687d48c82017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01423-xhttps://doaj.org/toc/2045-2322Abstract Metallic Ni1−x V x alloys exhibit a ferromagnetic to paramagnetic disordered quantum phase transition in bulk. Such a phase transition is accompanied by a quantum Griffiths phase (QGP), featuring fractional power-law temperature dependences of physical variables, like magnetic susceptibility and specific heat, at low temperatures. As nanoparticles (NP’s) usually exhibit properties significantly different from their bulk counterparts, it is intriguing to explore the occurrence of quantum Griffiths phase in Ni1−x V x nanoalloys. NP’s of Ni1−x V x (0 ≤ x ≤ 0.17) alloys are prepared by a chemical reflux method. The structure and composition of the nanoalloys are determined by X-ray diffraction, X-ray photoelectron spectroscopy and electron microscopy techniques. Metallicity of the samples has been ensured by electrical resistivity measurements. DC magnetization results suggest that ferromagnetism persists in the NP’s until x = 0.17. Low-temperature upturns in magnetic susceptibility and heat capacity hint at critical fluctuations evolving with V-doping. The fluctuations might stem from isolated Ni-clusters within the ferromagnetic NP, indicating a QGP region ranging from x = 0.085 to x ≫ 0.17.Priyadarsini SwainSuneel K. SrivastavaSanjeev K. SrivastavaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Priyadarsini Swain Suneel K. Srivastava Sanjeev K. Srivastava Exploring quantum Griffiths phase in Ni1−x V x nanoalloys |
description |
Abstract Metallic Ni1−x V x alloys exhibit a ferromagnetic to paramagnetic disordered quantum phase transition in bulk. Such a phase transition is accompanied by a quantum Griffiths phase (QGP), featuring fractional power-law temperature dependences of physical variables, like magnetic susceptibility and specific heat, at low temperatures. As nanoparticles (NP’s) usually exhibit properties significantly different from their bulk counterparts, it is intriguing to explore the occurrence of quantum Griffiths phase in Ni1−x V x nanoalloys. NP’s of Ni1−x V x (0 ≤ x ≤ 0.17) alloys are prepared by a chemical reflux method. The structure and composition of the nanoalloys are determined by X-ray diffraction, X-ray photoelectron spectroscopy and electron microscopy techniques. Metallicity of the samples has been ensured by electrical resistivity measurements. DC magnetization results suggest that ferromagnetism persists in the NP’s until x = 0.17. Low-temperature upturns in magnetic susceptibility and heat capacity hint at critical fluctuations evolving with V-doping. The fluctuations might stem from isolated Ni-clusters within the ferromagnetic NP, indicating a QGP region ranging from x = 0.085 to x ≫ 0.17. |
format |
article |
author |
Priyadarsini Swain Suneel K. Srivastava Sanjeev K. Srivastava |
author_facet |
Priyadarsini Swain Suneel K. Srivastava Sanjeev K. Srivastava |
author_sort |
Priyadarsini Swain |
title |
Exploring quantum Griffiths phase in Ni1−x V x nanoalloys |
title_short |
Exploring quantum Griffiths phase in Ni1−x V x nanoalloys |
title_full |
Exploring quantum Griffiths phase in Ni1−x V x nanoalloys |
title_fullStr |
Exploring quantum Griffiths phase in Ni1−x V x nanoalloys |
title_full_unstemmed |
Exploring quantum Griffiths phase in Ni1−x V x nanoalloys |
title_sort |
exploring quantum griffiths phase in ni1−x v x nanoalloys |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/681c0516a0744dc283d2a4ca687d48c8 |
work_keys_str_mv |
AT priyadarsiniswain exploringquantumgriffithsphaseinni1xvxnanoalloys AT suneelksrivastava exploringquantumgriffithsphaseinni1xvxnanoalloys AT sanjeevksrivastava exploringquantumgriffithsphaseinni1xvxnanoalloys |
_version_ |
1718394870750511104 |