A unifying nonlinear probabilistic epidemic model in space and time

Abstract Covid-19 epidemic dramatically relaunched the importance of mathematical modelling in supporting governments decisions to slow down the disease propagation. On the other hand, it remains a challenging task for mathematical modelling. The interplay between different models could be a key ele...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Roberto Beneduci, Eleonora Bilotta, Pietro Pantano
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/682b66f206d345bcb3cd0d0ad2e3d951
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Covid-19 epidemic dramatically relaunched the importance of mathematical modelling in supporting governments decisions to slow down the disease propagation. On the other hand, it remains a challenging task for mathematical modelling. The interplay between different models could be a key element in the modelling strategies. Here we propose a continuous space-time non-linear probabilistic model from which we can derive many of the existing models both deterministic and stochastic as for example SI, SIR, SIR stochastic, continuous-time stochastic models, discrete stochastic models, Fisher–Kolmogorov model. A partial analogy with the statistical interpretation of quantum mechanics provides an interpretation of the model. Epidemic forecasting is one of its possible applications; in principle, the model can be used in order to locate those regions of space where the infection probability is going to increase. The connection between non-linear probabilistic and non-linear deterministic models is analyzed. In particular, it is shown that the Fisher–Kolmogorov equation is connected to linear probabilistic models. On the other hand, a generalized version of the Fisher–Kolmogorov equation is derived from the non-linear probabilistic model and is shown to be characterized by a non-homogeneous time-dependent diffusion coefficient (anomalous diffusion) which encodes information about the non-linearity of the probabilistic model.