Robust and Fast Converging Cross-Layer Failure Correction in Segment-Routed Networks
Due to overlay technologies, service providers have a logical view of the underlay network and can optimize the experience quality without modifying the physical network. However, the cross-layer interaction inevitably causes network fluctuation due to their inconsistent optimization objectives. Asi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68368fe0233d4e338008f929fb60de0e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:68368fe0233d4e338008f929fb60de0e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:68368fe0233d4e338008f929fb60de0e2021-11-25T17:25:32ZRobust and Fast Converging Cross-Layer Failure Correction in Segment-Routed Networks10.3390/electronics102228742079-9292https://doaj.org/article/68368fe0233d4e338008f929fb60de0e2021-11-01T00:00:00Zhttps://www.mdpi.com/2079-9292/10/22/2874https://doaj.org/toc/2079-9292Due to overlay technologies, service providers have a logical view of the underlay network and can optimize the experience quality without modifying the physical network. However, the cross-layer interaction inevitably causes network fluctuation due to their inconsistent optimization objectives. Aside from that, network failures that occur in both layers not only cause network performance degradation but also significantly increase the frequency of cross-layer interaction. These problems make the network fluctuate for a long time, reduce the network performance, and influence the user experience, especially for time-sensitive applications. In this paper, we design a cross-layer architecture in which the logical layer can satisfy the service function chain demands and maximize the user experience and physical layer so it can optimize the overall network performance. Our cross-layer architecture can make proactive corrections in both layers. Furthermore, we investigate the cross-layer interaction and design two strategies to eliminate fluctuations and make the network converge quickly.Zengwei ZhengChenwei ZhaoJianwei ZhangMDPI AGarticletime-sensitiveoverlay routingsegment-routing cross-layer interactionfailure correctionElectronicsTK7800-8360ENElectronics, Vol 10, Iss 2874, p 2874 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
time-sensitive overlay routing segment-routing cross-layer interaction failure correction Electronics TK7800-8360 |
spellingShingle |
time-sensitive overlay routing segment-routing cross-layer interaction failure correction Electronics TK7800-8360 Zengwei Zheng Chenwei Zhao Jianwei Zhang Robust and Fast Converging Cross-Layer Failure Correction in Segment-Routed Networks |
description |
Due to overlay technologies, service providers have a logical view of the underlay network and can optimize the experience quality without modifying the physical network. However, the cross-layer interaction inevitably causes network fluctuation due to their inconsistent optimization objectives. Aside from that, network failures that occur in both layers not only cause network performance degradation but also significantly increase the frequency of cross-layer interaction. These problems make the network fluctuate for a long time, reduce the network performance, and influence the user experience, especially for time-sensitive applications. In this paper, we design a cross-layer architecture in which the logical layer can satisfy the service function chain demands and maximize the user experience and physical layer so it can optimize the overall network performance. Our cross-layer architecture can make proactive corrections in both layers. Furthermore, we investigate the cross-layer interaction and design two strategies to eliminate fluctuations and make the network converge quickly. |
format |
article |
author |
Zengwei Zheng Chenwei Zhao Jianwei Zhang |
author_facet |
Zengwei Zheng Chenwei Zhao Jianwei Zhang |
author_sort |
Zengwei Zheng |
title |
Robust and Fast Converging Cross-Layer Failure Correction in Segment-Routed Networks |
title_short |
Robust and Fast Converging Cross-Layer Failure Correction in Segment-Routed Networks |
title_full |
Robust and Fast Converging Cross-Layer Failure Correction in Segment-Routed Networks |
title_fullStr |
Robust and Fast Converging Cross-Layer Failure Correction in Segment-Routed Networks |
title_full_unstemmed |
Robust and Fast Converging Cross-Layer Failure Correction in Segment-Routed Networks |
title_sort |
robust and fast converging cross-layer failure correction in segment-routed networks |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/68368fe0233d4e338008f929fb60de0e |
work_keys_str_mv |
AT zengweizheng robustandfastconvergingcrosslayerfailurecorrectioninsegmentroutednetworks AT chenweizhao robustandfastconvergingcrosslayerfailurecorrectioninsegmentroutednetworks AT jianweizhang robustandfastconvergingcrosslayerfailurecorrectioninsegmentroutednetworks |
_version_ |
1718412354489679872 |