Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries

Measuring fluid characteristics is of high importance in various industries such as the polymer, petroleum, and petrochemical industries, etc. Flow regime classification and void fraction measurement are essential for predicting the performance of many systems. The efficiency of multiphase flow mete...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Siavash Hosseini, Osman Taylan, Mona Abusurrah, Thangarajah Akilan, Ehsan Nazemi, Ehsan Eftekhari-Zadeh, Farheen Bano, Gholam Hossein Roshani
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/6840531cead147eeb65ab2de9046f280
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6840531cead147eeb65ab2de9046f280
record_format dspace
spelling oai:doaj.org-article:6840531cead147eeb65ab2de9046f2802021-11-11T18:42:35ZApplication of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries10.3390/polym132136472073-4360https://doaj.org/article/6840531cead147eeb65ab2de9046f2802021-10-01T00:00:00Zhttps://www.mdpi.com/2073-4360/13/21/3647https://doaj.org/toc/2073-4360Measuring fluid characteristics is of high importance in various industries such as the polymer, petroleum, and petrochemical industries, etc. Flow regime classification and void fraction measurement are essential for predicting the performance of many systems. The efficiency of multiphase flow meters strongly depends on the flow parameters. In this study, MCNP (Monte Carlo N-Particle) code was employed to simulate annular, stratified, and homogeneous regimes. In this approach, two detectors (NaI) were utilized to detect the emitted photons from a cesium-137 source. The registered signals of both detectors were decomposed using a discrete wavelet transform (DWT). Following this, the low-frequency (approximation) and high-frequency (detail) components of the signals were calculated. Finally, various features of the approximation signals were extracted, using the average value, kurtosis, standard deviation (STD), and root mean square (RMS). The extracted features were thoroughly analyzed to find those features which could classify the flow regimes and be utilized as the inputs to a network for improving the efficiency of flow meters. Two different networks were implemented for flow regime classification and void fraction prediction. In the current study, using the wavelet transform and feature extraction approach, the considered flow regimes were classified correctly, and the void fraction percentages were calculated with a mean relative error (MRE) of 0.4%. Although the system presented in this study is proposed for measuring the characteristics of petroleum fluids, it can be easily used for other types of fluids such as polymeric fluids.Siavash HosseiniOsman TaylanMona AbusurrahThangarajah AkilanEhsan NazemiEhsan Eftekhari-ZadehFarheen BanoGholam Hossein RoshaniMDPI AGarticlewaveletfeature extractiontwo-phaseflow measurementOrganic chemistryQD241-441ENPolymers, Vol 13, Iss 3647, p 3647 (2021)
institution DOAJ
collection DOAJ
language EN
topic wavelet
feature extraction
two-phase
flow measurement
Organic chemistry
QD241-441
spellingShingle wavelet
feature extraction
two-phase
flow measurement
Organic chemistry
QD241-441
Siavash Hosseini
Osman Taylan
Mona Abusurrah
Thangarajah Akilan
Ehsan Nazemi
Ehsan Eftekhari-Zadeh
Farheen Bano
Gholam Hossein Roshani
Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries
description Measuring fluid characteristics is of high importance in various industries such as the polymer, petroleum, and petrochemical industries, etc. Flow regime classification and void fraction measurement are essential for predicting the performance of many systems. The efficiency of multiphase flow meters strongly depends on the flow parameters. In this study, MCNP (Monte Carlo N-Particle) code was employed to simulate annular, stratified, and homogeneous regimes. In this approach, two detectors (NaI) were utilized to detect the emitted photons from a cesium-137 source. The registered signals of both detectors were decomposed using a discrete wavelet transform (DWT). Following this, the low-frequency (approximation) and high-frequency (detail) components of the signals were calculated. Finally, various features of the approximation signals were extracted, using the average value, kurtosis, standard deviation (STD), and root mean square (RMS). The extracted features were thoroughly analyzed to find those features which could classify the flow regimes and be utilized as the inputs to a network for improving the efficiency of flow meters. Two different networks were implemented for flow regime classification and void fraction prediction. In the current study, using the wavelet transform and feature extraction approach, the considered flow regimes were classified correctly, and the void fraction percentages were calculated with a mean relative error (MRE) of 0.4%. Although the system presented in this study is proposed for measuring the characteristics of petroleum fluids, it can be easily used for other types of fluids such as polymeric fluids.
format article
author Siavash Hosseini
Osman Taylan
Mona Abusurrah
Thangarajah Akilan
Ehsan Nazemi
Ehsan Eftekhari-Zadeh
Farheen Bano
Gholam Hossein Roshani
author_facet Siavash Hosseini
Osman Taylan
Mona Abusurrah
Thangarajah Akilan
Ehsan Nazemi
Ehsan Eftekhari-Zadeh
Farheen Bano
Gholam Hossein Roshani
author_sort Siavash Hosseini
title Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries
title_short Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries
title_full Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries
title_fullStr Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries
title_full_unstemmed Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries
title_sort application of wavelet feature extraction and artificial neural networks for improving the performance of gas–liquid two-phase flow meters used in oil and petrochemical industries
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/6840531cead147eeb65ab2de9046f280
work_keys_str_mv AT siavashhosseini applicationofwaveletfeatureextractionandartificialneuralnetworksforimprovingtheperformanceofgasliquidtwophaseflowmetersusedinoilandpetrochemicalindustries
AT osmantaylan applicationofwaveletfeatureextractionandartificialneuralnetworksforimprovingtheperformanceofgasliquidtwophaseflowmetersusedinoilandpetrochemicalindustries
AT monaabusurrah applicationofwaveletfeatureextractionandartificialneuralnetworksforimprovingtheperformanceofgasliquidtwophaseflowmetersusedinoilandpetrochemicalindustries
AT thangarajahakilan applicationofwaveletfeatureextractionandartificialneuralnetworksforimprovingtheperformanceofgasliquidtwophaseflowmetersusedinoilandpetrochemicalindustries
AT ehsannazemi applicationofwaveletfeatureextractionandartificialneuralnetworksforimprovingtheperformanceofgasliquidtwophaseflowmetersusedinoilandpetrochemicalindustries
AT ehsaneftekharizadeh applicationofwaveletfeatureextractionandartificialneuralnetworksforimprovingtheperformanceofgasliquidtwophaseflowmetersusedinoilandpetrochemicalindustries
AT farheenbano applicationofwaveletfeatureextractionandartificialneuralnetworksforimprovingtheperformanceofgasliquidtwophaseflowmetersusedinoilandpetrochemicalindustries
AT gholamhosseinroshani applicationofwaveletfeatureextractionandartificialneuralnetworksforimprovingtheperformanceofgasliquidtwophaseflowmetersusedinoilandpetrochemicalindustries
_version_ 1718431766607298560